Skip to main content

High-Throughput Mouse Phenotyping

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 61))

Abstract

Here, we describe the systematic mouse phenotyping approach of the German Mouse Clinic (GMC), that works as an open-access phenotyping platform, and of the European Mouse Disease Clinic, which is an EU-funded multi-centre project characterising mutants generated by the large-scale mouse mutagenesis project European Conditional Mouse Mutagenesis Program. We explain the aims and the general framework of these large-scale projects and the resulting consequences for the phenotyping strategies. Then, we focus on the description of the behavioural tests used in the GMC to detect motor and non-motor symptoms in mouse mutants that are genetic models of human movement disorders or neurodegenerative diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Nadeau JH, Balling R, Barsh G, Beier D, Brown SD, Bucan M, et al. (2001) Sequence interpretation. Functional annotation of mouse genome sequences. Science 291: 1251–1255

    Article  PubMed  CAS  Google Scholar 

  2. O’Brien T, Woychik R (2003) Our small relative. Nat Genet 33: 3–4

    Article  PubMed  Google Scholar 

  3. Nobrega MA, Pennacchio LA (2004) Comparative genomic analysis as a tool for biological discovery. J Physiol 554: 31–39

    Article  PubMed  CAS  Google Scholar 

  4. Friedel RH, Seisenberger C, Kaloff C, Wurst W (2007) EUCOMM--the European conditional mouse mutagenesis program. Brief Funct Genomic Proteomic 6: 180–185

    Article  PubMed  CAS  Google Scholar 

  5. Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128: 9–13

    Article  PubMed  CAS  Google Scholar 

  6. Auwerx J, Avner P, Baldock R, Ballabio A, Balling R, Barbacid M, et al. (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36: 925–927

    Article  PubMed  CAS  Google Scholar 

  7. Abbott A (2009) Mouse genetics: The check-up. Nature 460: 947–948

    Article  PubMed  CAS  Google Scholar 

  8. Fuchs H, Gailus-Durner V, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, et al. (2010) Mouse Phenotyping. Methods

    Google Scholar 

  9. Gailus-Durner V, Fuchs H, Becker L, Bolle I, Brielmeier M, Calzada-Wack J, et al. (2005) Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat Methods 2: 403–404

    Article  PubMed  CAS  Google Scholar 

  10. Ohl F, Holsboer F, Landgraf R (2001) The modified hole board as a differential screen for behavior in rodents. Behav Res Methods Instrum Comput 33: 392–397

    Article  PubMed  CAS  Google Scholar 

  11. Rogers DC, Fisher EM, Brown SD, Peters J, Hunter AJ, Martin JE (1997) Behavioral and functional analysis of mouse phenotype: SHIRPA, a proposed protocol for comprehensive phenotype assessment. Mamm Genome 8: 711–713

    Article  PubMed  CAS  Google Scholar 

  12. Fuchs H, Gailus-Durner V, Adler T, Pimentel JA, Becker L, Bolle I, et al. (2009) The German Mouse Clinic: a platform for systemic phenotype analysis of mouse models. Curr Pharm Biotechnol 10: 236–243

    Article  PubMed  CAS  Google Scholar 

  13. Brown SD, Chambon P, de Angelis MH (2005) EMPReSS: standardized phenotype screens for functional annotation of the mouse genome. Nat Genet 37: 1155

    Article  PubMed  CAS  Google Scholar 

  14. Mallon AM, Blake A, Hancock JM (2008) EuroPhenome and EMPReSS: online mouse phenotyping resource. Nucleic Acids Res 36: D715–718

    Article  PubMed  CAS  Google Scholar 

  15. Morgan H, Beck T, Blake A, Gates H, Adams N, Debouzy G, et al. (2010) EuroPhenome: a repository for high-throughput mouse phenotyping data. Nucleic Acids Res 38: D577–585

    Article  PubMed  CAS  Google Scholar 

  16. Mandillo S, Tucci V, Holter SM, Meziane H, Banchaabouchi MA, Kallnik M, et al. (2008) Reliability, robustness, and reproducibility in mouse behavioral phenotyping: a cross-laboratory study. Physiol Genomics 34: 243–255

    Article  PubMed  Google Scholar 

  17. Gailus-Durner V, Fuchs H, Adler T, Aguilar Pimentel A, Becker L, et al. (2009) Systemic first-line phenotyping. Methods Mol Biol 530: 463–509

    Article  PubMed  CAS  Google Scholar 

  18. Abbott A (2010) Mouse project to find each gene’s role. Nature 465: 410

    Article  PubMed  CAS  Google Scholar 

  19. Wurst W, de Angelis MH (2010) Systematic phenotyping of mouse mutants. Nat Biotechnol 28: 684–685

    Article  PubMed  CAS  Google Scholar 

  20. Moberg PJ, Doty RL, Mahr RN, Mesholam RI, Arnold SE, Turetsky BI, Gur RE (1997) Olfactory identification in elderly schizophrenia and Alzheimer’s disease. Neurobiol Aging 18: 163–167

    Article  PubMed  CAS  Google Scholar 

  21. Moberg PJ, Doty RL (1997) Olfactory function in Huntington’s disease patients and at-risk offspring. Int J Neurosci 89: 133–139

    Article  PubMed  CAS  Google Scholar 

  22. McIlwain KL, Merriweather MY, Yuva-Paylor LA, Paylor R (2001) The use of behavioral test batteries: effects of training history. Physiol Behav 73: 705–717

    Article  PubMed  CAS  Google Scholar 

  23. Archer J (1973) Tests for emotionality in rats and mice: a review. Anim Behav 21: 205–235

    Article  PubMed  CAS  Google Scholar 

  24. Crawley JN (1989) Animal models of anxiety. Current Opinion in Psychiatry 2: 773–776

    Article  Google Scholar 

  25. Weiss SM, Lightowler S, Stanhope KJ, Kennett GA, Dourish CT (2000) Measurement of anxiety in transgenic mice. Rev Neurosci 11: 59–74

    Article  PubMed  CAS  Google Scholar 

  26. Choleris E, Thomas AW, Kavaliers M, Prato FS (2001) A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci Biobehav Rev 25: 235–260

    Article  PubMed  CAS  Google Scholar 

  27. Walsh RN, Cummins RA (1976) The Open-Field Test: a critical review. Psychol Bull 83: 482–504

    Article  PubMed  CAS  Google Scholar 

  28. Sedelis M, Schwarting RK, Huston JP (2001) Behavioral phenotyping of the MPTP mouse model of Parkinson’s disease. Behav Brain Res 125: 109–125

    Article  PubMed  CAS  Google Scholar 

  29. Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24: 9434–9440

    Article  PubMed  CAS  Google Scholar 

  30. Carter RJ, Lione LA, Humby T, Mangiarini L, Mahal A, Bates GP, Dunnett SB, Morton AJ (1999) Characterization of progressive motor deficits in mice transgenic for the human Huntington’s disease mutation. J Neurosci 19: 3248–3257

    PubMed  CAS  Google Scholar 

  31. Fischer LR, Culver DG, Tennant P, Davis AA, Wang M, Castellano-Sanchez A, Khan J, Polak MA, Glass JD (2004) Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man. Exp Neurol 185: 232–240

    Article  PubMed  Google Scholar 

  32. Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH (2001) Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. J Neurotrauma 18: 187–201

    Article  PubMed  CAS  Google Scholar 

  33. Alexis NE, Dietrich WD, Green EJ, Prado R, Watson BD (1995) Nonocclusive common carotid artery thrombosis in the rat results in reversible sensorimotor and cognitive behavioral deficits. Stroke 26: 2338–2346

    Article  PubMed  CAS  Google Scholar 

  34. Ohlsson AL, Johansson BB (1995) Environment influences functional outcome of cerebral infarction in rats. Stroke 26: 644–649

    Article  PubMed  CAS  Google Scholar 

  35. Shelton SB, Pettigrew DB, Hermann AD, Zhou W, Sullivan PM, Crutcher KA, Strauss KI (2008) A simple, efficient tool for assessment of mice after unilateral cortex injury. J Neurosci Methods 168: 431–442

    Article  PubMed  Google Scholar 

  36. Goldstein LB, Davis JN (1990) Beam-walking in rats: studies towards developing an animal model of functional recovery after brain injury. J Neurosci Methods 31: 101–107

    Article  PubMed  CAS  Google Scholar 

  37. Majchrzak M, Brailowsky S, Will B (1992) Chronic infusion of GABA into the nucleus basalis magnocellularis or frontal cortex of rats: a behavioral and histological study. Exp Brain Res 88: 531–540

    Article  PubMed  CAS  Google Scholar 

  38. Plaas M, Karis A, Innos J, Rebane E, Baekelandt V, Vaarmann A, Luuk H, Vasar E, Koks S (2008) Alpha-synuclein A30P point-mutation generates age-dependent nigrostriatal deficiency in mice. J Physiol Pharmacol 59: 205–216

    PubMed  CAS  Google Scholar 

  39. Kline AE, Massucci JL, Marion DW, Dixon CE (2002) Attenuation of working memory and spatial acquisition deficits after a delayed and chronic bromocriptine treatment regimen in rats subjected to traumatic brain injury by controlled cortical impact. J Neurotrauma 19: 415–425

    Article  PubMed  Google Scholar 

  40. Dluzen DE, Liu B, Chen CY, DiCarlo SE (1995) Daily spontaneous running alters behavioral and neurochemical indexes of nigrostriatal function. J Appl Physiol 78: 1219–1224

    Article  PubMed  CAS  Google Scholar 

  41. Emerick AJ, Kartje GL (2004) Behavioral recovery and anatomical plasticity in adult rats after cortical lesion and treatment with monoclonal antibody IN-1. Behav Brain Res 152: 315–325

    Article  PubMed  CAS  Google Scholar 

  42. Riek-Burchardt M, Henrich-Noack P, Metz GA, Reymann KG (2004) Detection of chronic sensorimotor impairments in the ladder rung walking task in rats with endothelin-1-induced mild focal ischemia. J Neurosci Methods 137: 227–233

    Article  PubMed  Google Scholar 

  43. Farr TD, Liu L, Colwell KL, Whishaw IQ, Metz GA (2006) Bilateral alteration in stepping pattern after unilateral motor cortex injury: a new test strategy for analysis of skilled limb movements in neurological mouse models. J Neurosci Methods 153: 104–113

    Article  PubMed  Google Scholar 

  44. Ploughman M, Attwood Z, White N, Dore JJ, Corbett D (2007) Endurance exercise facilitates relearning of forelimb motor skill after focal ischemia. Eur J Neurosci 25: 3453–3460

    Article  PubMed  Google Scholar 

  45. Metz GA, Whishaw IQ (2002) Cortical and subcortical lesions impair skilled walking in the ladder rung walking test: a new task to evaluate fore- and hindlimb stepping, placing, and co-ordination. J Neurosci Methods 115: 169–179

    Article  PubMed  Google Scholar 

  46. Faraji J, Metz GA (2007) Sequential bilateral striatal lesions have additive effects on single skilled limb use in rats. Behav Brain Res 177: 195–204

    Article  PubMed  Google Scholar 

  47. Z’Graggen WJ, Metz GA, Kartje GL, Thallmair M, Schwab ME (1998) Functional recovery and enhanced corticofugal plasticity after unilateral pyramidal tract lesion and blockade of myelin-associated neurite growth inhibitors in adult rats. J Neurosci 18: 4744–4757

    PubMed  Google Scholar 

  48. Metz GA, Merkler D, Dietz V, Schwab ME, Fouad K (2000) Efficient testing of motor function in spinal cord injured rats. Brain Res 883: 165–177

    Article  PubMed  CAS  Google Scholar 

  49. Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y (1985) A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmacol 50: 435–441

    PubMed  CAS  Google Scholar 

  50. Ogawa N, Mizukawa K, Hirose Y, Kajita S, Ohara S, Watanabe Y (1987) MPTP-induced parkinsonian model in mice: biochemistry, pharmacology and behavior. Eur Neurol 26 Suppl 1: 16–23

    Article  PubMed  CAS  Google Scholar 

  51. Matsuura K, Kabuto H, Makino H, Ogawa N (1997) Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J Neurosci Methods 73: 45–48

    Article  PubMed  CAS  Google Scholar 

  52. Fernagut PO, Chalon S, Diguet E, Guilloteau D, Tison F, Jaber M (2003) Motor behaviour deficits and their histopathological and functional correlates in the nigrostriatal system of dopamine transporter knockout mice. Neuroscience 116: 1123–1130

    Article  PubMed  CAS  Google Scholar 

  53. Wahlsten D, Metten P, Phillips TJ, Boehm SL, Burkhart-Kasch S, Dorow J, et al. (2003) Different data from different labs: lessons from studies of gene-environment interaction. J Neurobiol 54: 283–311

    Article  PubMed  Google Scholar 

  54. Capacio BR, Harris LW, Anderson DR, Lennox WJ, Gales V, Dawson JS (1992) Use of the accelerating rotarod for assessment of motor performance decrement induced by potential anticonvulsant compounds in nerve agent poisoning. Drug Chem Toxicol 15: 177–201

    Article  PubMed  CAS  Google Scholar 

  55. Tilson HA (1990) Behavioral indices of neurotoxicity. Toxicol Pathol 18: 96–104

    PubMed  CAS  Google Scholar 

  56. Maurissen JP, Marable BR, Andrus AK, Stebbins KE (2003) Factors affecting grip strength testing. Neurotoxicol Teratol 25: 543–553

    Article  PubMed  CAS  Google Scholar 

  57. Engelmann M, Wotjak CT, Landgraf R (1995) Social discrimination procedure: an alternative method to investigate juvenile recognition abilities in rats. Physiol Behav 58: 315–321

    Article  PubMed  CAS  Google Scholar 

  58. Richter K, Wolf G, Engelmann M (2005) Social recognition memory requires two stages of protein synthesis in mice. Learn Mem 12: 407–413

    Article  PubMed  Google Scholar 

  59. Deussing JM, Breu J, Kuhne C, Kallnik M, Bunck M, Glasl L, et al. (2010) Urocortin 3 modulates social discrimination abilities via corticotropin-releasing hormone receptor type 2. J Neurosci 30: 9103–9116

    PubMed  CAS  Google Scholar 

  60. Ennaceur A, Delacour J (1988) A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res 31: 47–59

    Article  PubMed  CAS  Google Scholar 

  61. Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418: 970–975

    Article  PubMed  CAS  Google Scholar 

  62. Feil R, Holter SM, Weindl K, Wurst W, Langmesser S, Gerling A, Feil S, Albrecht U (2009) cGMP-dependent protein kinase I, the circadian clock, sleep and learning. Commun Integr Biol 2: 298–301

    Article  PubMed  CAS  Google Scholar 

  63. Pham TT, Giesert F, Rothig A, Floss T, Kallnik M, Weindl K, et al. (2010) DJ-1-deficient mice show less TH-positive neurons in the ventral tegmental area and exhibit non-motoric behavioural impairments. Genes Brain Behav 9: 305–317

    Article  PubMed  CAS  Google Scholar 

  64. Mihalick SM, Langlois JC, Krienke JD, Dube WV (2000) An olfactory discrimination procedure for mice. J Exp Anal Behav 73: 305–318

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Bundesministerium für Bildung und Forschung within the framework of the NGFN-Plus (FKZ: 01GS0850 and 01GS08174), the European Commission (EUMODIC: LSHG-2006-037188) and the “Helmholtz Alliance for Mental Health in an Ageing Society” (HELMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine M. Hölter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hölter, S.M., Glasl, L. (2011). High-Throughput Mouse Phenotyping. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics