Skip to main content

The MPTP-Treated Primate, with Specific Reference to the Use of the Common Marmoset (Callithrix jacchus)

  • Protocol
  • First Online:
Book cover Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 61))

Abstract

For investigations into treatment of Parkinson’s disease, the 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-treated primate has become one of the most important and established animal models. Various species of both Old and New world primate have been used, employing differing MPTP-treatment regimes and methods for the assessment of motor deficits and motor complications. In this chapter, we briefly review the use of these varying models and treatment regimes, the effects of MPTP treatment and the general characteristics and drug response of the primate model. In detail, we describe the procedures we employ for MPTP treating the common marmoset including the specific welfare, husbandry and aftercare protocols that are essential to produce a successful model. We also describe the methods for inducing the expression of persistent dyskinesia and how to accurately assess changes in locomotor activity, motor disability and the severity of dyskinesia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494

    PubMed  Google Scholar 

  2. Lundblad M, Andersson M, Winkler C, Kirik D, Wierup N, Cenci MA (2002) Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. Eur J Neurosci 15:120–132

    PubMed  CAS  Google Scholar 

  3. POIRIER LJ (1960) Experimental and histological study of midbrain dyskinesias. J Neurophysiol 23:534–551

    PubMed  CAS  Google Scholar 

  4. Davis GC, Williams AC, Markey SP, Ebert MH, Caine ED, Reichert CM, Kopin IJ (1979) Chronic Parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1:249–254

    PubMed  CAS  Google Scholar 

  5. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    PubMed  CAS  Google Scholar 

  6. Burns RS, Markey SP, Phillips JM, Chiueh CC (1984) The neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the monkey and man. Can J Neurol Sci 11:166–168

    PubMed  CAS  Google Scholar 

  7. Jenner P, Rupniak NM, Rose S, Kelly E, Kilpatrick G, Lees A, Marsden CD (1984) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in the common marmoset. Neurosci Lett 50:85–90

    PubMed  CAS  Google Scholar 

  8. Crossman AR, Clarke CE, Boyce S, Robertson RG, Sambrook MA (1987) MPTP-induced parkinsonism in the monkey: neurochemical pathology, complications of treatment and pathophysiological mechanisms. Can J Neurol Sci 14:428–435

    PubMed  CAS  Google Scholar 

  9. Langston JW, Forno LS, Rebert CS, Irwin I (1984) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res 292:390–394

    PubMed  CAS  Google Scholar 

  10. Iravani MM, Syed E, Jackson MJ, Johnston LC, Smith LA, Jenner P (2005) A modified MPTP treatment regime produces reproducible partial nigrostriatal lesions in common marmosets. Eur J Neurosci 21:841–854

    PubMed  Google Scholar 

  11. Pearce RK, Jackson M, Smith L, Jenner P, Marsden CD (1995) Chronic L-DOPA ­administration induces dyskinesias in the 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-treated common marmoset (Callithrix Jacchus). Mov Disord 10:731–740

    PubMed  CAS  Google Scholar 

  12. Jacobowitz DM, Burns RS, Chiueh CC, Kopin IJ (1984) N-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) causes destruction of the nigrostriatal but not the mesolimbic dopamine system in the monkey. Psychopharmacol Bull 20:416–422

    PubMed  CAS  Google Scholar 

  13. Forno LS, Langston JW, DeLanney LE, Irwin I, Ricaurte GA (1986) Locus ceruleus lesions and eosinophilic inclusions in MPTP-treated monkeys. Ann Neurol 20:449–455

    PubMed  CAS  Google Scholar 

  14. Forno LS, Langston JW, DeLanney LE, Irwin I (1988) An electron microscopic study of MPTP-induced inclusion bodies in an old monkey. Brain Res 448:150–157

    PubMed  CAS  Google Scholar 

  15. Schmidt CJ, Matsuda LA, Gibb JW (1984) In vitro release of tritiated monoamines from rat CNS tissue by the neurotoxic compound 1-methyl-phenyl-tetrahydropyridine. Eur J Pharmacol 103:255–260

    PubMed  CAS  Google Scholar 

  16. Barcia C, Sanchez BA, Fernandez-Villalba E, Bautista V, Poza YP, Fernandez-Barreiro A, Hirsch EC, Herrero MT (2004) Evidence of active microglia in substantia nigra pars compacta of parkinsonian monkeys 1 year after MPTP exposure. Glia 46:402–409

    PubMed  Google Scholar 

  17. Waters CM, Hunt SP, Jenner P, Marsden CD (1987) An immunohistochemical study of the acute and long-term effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the marmoset. Neuroscience 23:1025–1039

    PubMed  CAS  Google Scholar 

  18. McGeer PL, Schwab C, Parent A, Doudet D (2003) Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administra-tion. Ann Neurol 54:599–604

    PubMed  CAS  Google Scholar 

  19. Rose S, Nomoto M, Jackson EA, Gibb WR, Jaehnig P, Jenner P, Marsden CD (1993) Age-related effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of common marmosets. Eur J Pharmacol 230:177–185

    PubMed  CAS  Google Scholar 

  20. Bartlett RM, Holden JE, Nickles RJ, Murali D, Barbee DL, Barnhart TE, Christian BT, DeJesus OT (2009) Paraquat is excluded by the blood brain barrier in rhesus macaque: An in vivo pet study. Brain Res 1259:74–79

    PubMed  CAS  Google Scholar 

  21. Jenner P (1989) Clues to the mechanism underlying dopamine cell death in Parkinson’s disease. J Neurol Neurosurg Psychiatry Suppl:22–28

    Google Scholar 

  22. Maret G, el TN, Carrupt PA, Testa B, Jenner P, Baird M (1990) Toxication of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and analogs by monoamine oxidase. A structure-reactivity relationship study. Biochem Pharmacol 40:783–792

    Google Scholar 

  23. Clarke CE, Boyce S, Robertson RG, Sambrook MA, Crossman AR (1989) Drug-induced dyskinesia in primates rendered hemiparkinsonian by intracarotid administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). J Neurol Sci 90:307–314

    PubMed  CAS  Google Scholar 

  24. Guttman M, Fibiger HC, Jakubovic A, Calne DB (1990) Intracarotid 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration: biochemical and behavioral observations in a primate model of hemiparkinsonism. J Neurochem 54:1329–1334

    PubMed  CAS  Google Scholar 

  25. Andringa G, Vermeulen RJ, Drukarch B, Renier WO, Stoof JC, Cools AR (1999) The validity of the pretreated, unilaterally MPTP-treated monkeys as a model of Parkinson’s disease: a detailed behavioural analysis of the therapeutic and undesired effects of the D2 agonist quinpirole and the D1 agonist SKF 81297. Behav Pharmacol 10:163–173

    PubMed  CAS  Google Scholar 

  26. Guehl D, Pessiglione M, Francois C, Yelnik J, Hirsch EC, Feger J, Tremblay L (2003) Tremor-related activity of neurons in the “motor” thalamus: changes in firing rate and pattern in the MPTP vervet model of parkinsonism. Eur J Neurosci 17:2388–2400

    PubMed  CAS  Google Scholar 

  27. Barraud Q, Lambrecq V, Forni C, McGuire S, Hill M, Bioulac B, Balzamo E, Bezard E, Tison F, Ghorayeb I (2009) Sleep disorders in Parkinson’s disease: the contribution of the MPTP non-human primate model. Exp Neurol 219:574–582

    PubMed  CAS  Google Scholar 

  28. Bodis-Wollner I (1990) Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci 13:296–302

    PubMed  CAS  Google Scholar 

  29. Decamp E, Schneider JS (2004) Attention and executive function deficits in chronic low-dose MPTP-treated non-human primates. Eur J Neurosci 20:1371–1378

    PubMed  CAS  Google Scholar 

  30. Schneider JS, Kovelowski CJ (1990) Chronic exposure to low doses of MPTP. I. Cognitive deficits in motor asymptomatic monkeys. Brain Res 519:122–128

    PubMed  CAS  Google Scholar 

  31. Bedard PJ, Di PT, Falardeau P, Boucher R (1986) Chronic treatment with L-DOPA, but not bromocriptine induces dyskinesia in MPTP-parkinsonian monkeys. Correlation with (3H)spiperone binding. Brain Res 379:294–299

    PubMed  CAS  Google Scholar 

  32. Jackson MJ, Smith LA, Al-Barghouthy G, Rose S, Jenner P (2007) Decreased expression of l-dopa-induced dyskinesia by switching to ropinirole in MPTP-treated common marmosets. Exp Neurol 204:162–170

    PubMed  CAS  Google Scholar 

  33. Smith LA, Jackson MJ, Johnston L, Kuoppamaki M, Rose S, Al-Barghouthy G, Del SS, Jenner P (2006) Switching from levodopa to the long-acting dopamine D2/D3 agonist piribedil reduces the expression of dyskinesia while maintaining effective motor activity in MPTP-treated primates. Clin Neuropharmacol 29:112–125

    PubMed  CAS  Google Scholar 

  34. Blanchet PJ, Grondin R, Bedard PJ (1996) Dyskinesia and wearing-off following dopamine D1 agonist treatment in drug-naive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. Mov Disord 11:91–94

    PubMed  CAS  Google Scholar 

  35. Visanji NP, Gomez-Ramirez J, Johnston TH, Pires D, Voon V, Brotchie JM, Fox SH (2006) Pharmacological characterization of psychosis-like behavior in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 21:1879–1891

    PubMed  Google Scholar 

  36. Petzinger GM, Quik M, Ivashina E, Jakowec MW, Jakubiak M, Di MD, Langston JW (2001) Reliability and validity of a new global dyskinesia rating scale in the MPTP-lesioned non-human primate. Mov Disord 16:202–207

    PubMed  CAS  Google Scholar 

  37. Przedborski S, Jackson-Lewis V, Naini AB, Jakowec M, Petzinger G, Miller R, Akram M (2001) The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. J Neurochem 76:1265–1274

    PubMed  CAS  Google Scholar 

  38. Jackson MJ (2001) Environmental enrichment and husbandry of the MPTP-treated common marmoset. Animal Technology 52:21–27

    Google Scholar 

  39. Foltin RW, Fischman MW, Byrne MF (1989) Food intake in baboons: effects of diazepam. Psychopharmacology (Berl) 97:443–447

    CAS  Google Scholar 

  40. Locke KW, Brown DR, Holtzman SG (1982) Effects of opiate antagonists and putative mu- and kappa-agonists on milk intake in rat and squirrel monkey. Pharmacol Biochem Behav 17:1275–1279

    PubMed  CAS  Google Scholar 

  41. Albanese A, Jenner P, Marsden CD, Stephenson JD (1988) Bladder hyperreflexia induced in marmosets by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurosci Lett 87:46–50

    PubMed  CAS  Google Scholar 

  42. Kuoppamaki M, Al-Barghouthy G, Jackson M, Smith L, Zeng BY, Quinn N, Jenner P (2002) Beginning-of-dose and rebound worsening in MPTP-treated common marmosets treated with levodopa. Mov Disord 17:1312–1317

    PubMed  Google Scholar 

  43. Maratos EC, Jackson MJ, Pearce RK, Jenner P (2001) Antiparkinsonian activity and dyskinesia risk of ropinirole and L-DOPA combination therapy in drug naive MPTP-lesioned common marmosets (Callithrix jacchus). Mov Disord 16:631–641

    PubMed  CAS  Google Scholar 

  44. Rose S, Scheller DK, Breidenbach A, Smith L, Jackson M, Stockwell K, Jenner P (2007) Plasma levels of rotigotine and the reversal of motor deficits in MPTP-treated primates. Behav Pharmacol 18:155–160

    PubMed  CAS  Google Scholar 

  45. Smith LA, Jackson MG, Bonhomme C, Chezaubernard C, Pearce RK, Jenner P (2000) Transdermal administration of piribedil reverses MPTP-induced motor deficits in the common marmoset. Clin Neuropharmacol 23:133–142

    PubMed  CAS  Google Scholar 

  46. Stockwell KA, Virley DJ, Perren M, Iravani MM, Jackson MJ, Rose S, Jenner P (2008) Continuous delivery of ropinirole reverses motor deficits without dyskinesia induction in MPTP-treated common marmosets. Exp Neurol 211:172–179

    PubMed  CAS  Google Scholar 

  47. Stockwell KA, Scheller D, Rose S, Jackson MJ, Tayarani-Binazir K, Iravani MM, Smith LA, Olanow CW, Jenner P (2009) Continuous administration of rotigotine to MPTP-treated common marmosets enhances anti-parkinsonian activity and reduces dyskinesia induction. Exp Neurol 219:533–542

    PubMed  CAS  Google Scholar 

  48. Stockwell KA, Scheller DK, Smith LA, Rose S, Iravani MM, Jackson MJ, Jenner P (2010) Continuous rotigotine administration reduces dyskinesia resulting from pulsatile treatment with rotigotine or L-DOPA in MPTP-treated common marmosets. Exp Neurol 221:79–85

    PubMed  CAS  Google Scholar 

  49. Tayarani-Binazir KA, Jackson MJ, Rose S, Olanow CW, Jenner P (2010) Pramipexole combined with levodopa improves motor function but reduces dyskinesia in MPTP-treated common marmosets. Mov Disord

    Google Scholar 

  50. Smith LA, Jackson MJ, Al-Barghouthy G, Rose S, Kuoppamaki M, Olanow W, Jenner P (2005) Multiple small doses of levodopa plus entacapone produce continuous dopaminergic stimulation and reduce dyskinesia induction in MPTP-treated drug-naive primates. Mov Disord 20:306–314

    PubMed  Google Scholar 

  51. Tayarani-Binazir KA, Jackson MJ, Fisher R, Zoubiane G, Rose S, Jenner P (2010) The timing of administration, dose dependence and efficacy of dopa decarboxylase inhibitors on the reversal of motor disability produced by L-DOPA in the MPTP-treated common marmoset. Eur J Pharmacol 635:109–116

    PubMed  CAS  Google Scholar 

  52. Shiosaki K, Jenner P, Asin KE, Britton DR, Lin CW, Michaelides M, Smith L, Bianchi B, Didomenico S, Hodges L, Hong Y, Mahan L, Mikusa J, Miller T, Nikkel A, Stashko M, Witte D, Williams M (1996) ABT-431: the diacetyl prodrug of A-86929, a potent and selective dopamine D1 receptor agonist: in vitro characterization and effects in animal models of Parkinson’s disease. J Pharmacol Exp Ther 276:150–160

    PubMed  CAS  Google Scholar 

  53. Smith LA, Jackson MJ, Al-Barghouthy G, Jenner P (2002) The actions of a D-1 agonist in MPTP treated primates show dependence on both D-1 and D-2 receptor function and tolerance on repeated administration. J Neural Transm 109:123–140

    PubMed  CAS  Google Scholar 

  54. Rascol O, Blin O, Thalamas C, Descombes S, Soubrouillard C, Azulay P, Fabre N, Viallet F, Lafnitzegger K, Wright S, Carter JH, Nutt JG (1999) ABT-431, a D1 receptor agonist prodrug, has efficacy in Parkinson’s disease. Ann Neurol 45:736–741

    PubMed  CAS  Google Scholar 

  55. Jackson MJ, Andree TH, Hansard M, Hoffman DC, Hurtt MR, Kehne JH, Pitler TA, Smith LA, Stack G, Jenner P (2010) The dopamine D(2) receptor partial agonist aplindore improves motor deficits in MPTP-treated common marmosets alone and combined with L-dopa. J Neural Transm 117:55–67

    PubMed  CAS  Google Scholar 

  56. Johnston LC, Jackson MJ, Rose S, McCreary AC, Jenner P (2010) Pardoprunox reverses motor deficits but induces only mild dyskinesia in MPTP-treated common marmosets. Mov Disord 25:2059–2066

    PubMed  Google Scholar 

  57. Jones CA, Johnston LC, Jackson MJ, Smith LA, van SG, Rose S, Jenner PG, McCreary AC (2010) An in vivo pharmacological evaluation of pardoprunox (SLV308)--a novel combined dopamine D(2)/D(3) receptor partial agonist and 5-HT(1A) receptor agonist with efficacy in experimental models of Parkinson’s disease. Eur Neuropsychopharmacol 20:582–593

    Google Scholar 

  58. Tayarani-Binazir K, Jackson MJ, Rose S, McCreary AC, Jenner P (2010) The partial dopamine agonist pardoprunox (SLV308) administered in combination with l-dopa improves efficacy and decreases dyskinesia in MPTP treated common marmosets. Exp Neurol 226:320–327

    PubMed  CAS  Google Scholar 

  59. Pearce RK, Smith LA, Jackson MJ, Banerji T, Scheel-Kruger J, Jenner P (2002) The monoamine reuptake blocker brasofensine reverses akinesia without dyskinesia in MPTP-treated and levodopa-primed common marmosets. Mov Disord 17:877–886

    PubMed  Google Scholar 

  60. Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P (2002) Dopamine, but not norepinephrine or serotonin, reuptake inhibition reverses motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates. J Pharmacol Exp Ther 303:952–958

    PubMed  CAS  Google Scholar 

  61. Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P (2002) Dopamine reuptake inhibition and failure to evoke dyskinesia in MPTP-treated primates. Eur J Pharmacol 451:157–160

    PubMed  CAS  Google Scholar 

  62. Hansard MJ, Smith LA, Jackson MJ, Cheetham SC, Jenner P (2004) The monoamine reuptake inhibitor BTS 74 398 fails to evoke established dyskinesia but does not synergise with levodopa in MPTP-treated primates. Mov Disord 19:15–21

    PubMed  Google Scholar 

  63. Hill MP, Ravenscroft P, Bezard E, Crossman AR, Brotchie JM, Michel A, Grimee R, Klitgaard H (2004) Levetiracetam potentiates the antidyskinetic action of amantadine in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned primate model of Parkinson’s disease. J Pharmacol Exp Ther 310:386–394

    PubMed  CAS  Google Scholar 

  64. Kanda T, Jackson MJ, Smith LA, Pearce RK, Nakamura J, Kase H, Kuwana Y, Jenner P (1998) Adenosine A2A antagonist: a novel antiparkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 43:507–513

    PubMed  CAS  Google Scholar 

  65. Rose S, Jackson MJ, Smith LA, Stockwell K, Johnson L, Carminati P, Jenner P (2006) The novel adenosine A2a receptor antagonist ST1535 potentiates the effects of a threshold dose of L-DOPA in MPTP treated common marmosets. Eur J Pharmacol 546:82–87

    PubMed  CAS  Google Scholar 

  66. Savola JM, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG, Fox SH, Crossman AR, Brotchie JM (2003) Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkin­son’s disease. Mov Disord 18:872–883

    PubMed  Google Scholar 

  67. Hauser RA, Shulman LM, Trugman JM, Roberts JW, Mori A, Ballerini R, Sussman NM (2008) Study of istradefylline in patients with Parkinson’s disease on levodopa with motor fluctuations. Mov Disord 23:2177–2185

    PubMed  Google Scholar 

  68. Mizuno Y, Hasegawa K, Kondo T, Kuno S, Yamamoto M (2010) Clinical efficacy of istradefylline (KW-6002) in Parkinson’s disease: a randomized, controlled study. Mov Disord 25:1437–1443

    PubMed  Google Scholar 

  69. Iravani MM, Tayarani-Binazir K, Chu WB, Jackson MJ, Jenner P (2006) In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated primates, the selective 5-hydroxytryptamine 1a agonist (R)-(+)-8-OHDPAT inhibits levodopa-induced dyskinesia but only with\ increased motor disability. J Pharmacol Exp Ther 319:1225–1234

    PubMed  CAS  Google Scholar 

  70. Olanow CW, Damier P, Goetz CG, Mueller T, Nutt J, Rascol O, Serbanescu A, Deckers F, Russ H (2004) Multicenter, open-label, trial of sarizotan in Parkinson disease patients with levodopa-induced dyskinesias (the SPLENDID Study). Clin Neuropharmacol 27:58–62

    PubMed  CAS  Google Scholar 

  71. Iravani MM, Haddon CO, Cooper JM, Jenner P, Schapira AH (2006) Pramipexole protects against MPTP toxicity in non-human primates. J Neurochem 96:1315–1321

    PubMed  CAS  Google Scholar 

  72. van Vliet SA, Blezer EL, Jongsma MJ, Vanwersch RA, Olivier B, Philippens IH (2008) Exploring the neuroprotective effects of modafinil in a marmoset Parkinson model with immunohistochemistry, magnetic ­resonance imaging and spectroscopy. Brain Res 1189:219–228

    PubMed  Google Scholar 

  73. Iravani MM, Costa S, Al-Bargouthy G, Jackson MJ, Zeng BY, Kuoppamaki M, Obeso JA, Jenner P (2005) Unilateral pallidotomy in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmosets exhibiting levodopa-induced dyskinesia. Eur J Neurosci 22:1305–1318

    PubMed  Google Scholar 

  74. Costa S, Iravani MM, Pearce RK, Jenner P (2001) Glial cell line-derived neurotrophic factor concentration dependently improves disability and motor activity in MPTP-treated common marmosets. Eur J Pharmacol 412:45–50

    PubMed  CAS  Google Scholar 

  75. Dass B, Iravani MM, Jackson MJ, Engber TM, Galdes A, Jenner P (2002) Behavioural and immunohistochemical changes following supranigral administration of sonic hedgehog in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated common marmosets. Neuroscience 114:99–109

    PubMed  CAS  Google Scholar 

  76. Iravani MM, Costa S, Jackson MJ, Tel BC, Cannizzaro C, Pearce RK, Jenner P (2001) GDNF reverses priming for dyskinesia in MPTP-treated, L-DOPA-primed common marmosets. Eur J Neurosci 13:597–608

    PubMed  CAS  Google Scholar 

  77. Pearce RK, Costa S, Jenner P, Marsden CD (1999) Chronic supranigral infusion of BDNF in normal and MPTP-treated common marmosets. J Neural Transm 106:663–683

    PubMed  CAS  Google Scholar 

  78. Kaseda S, Nomoto M, Iwata S (1999) Effect of selegiline on dopamine concentration in the striatum of a primate. Brain Res 815:44–50

    PubMed  CAS  Google Scholar 

  79. Nomoto M (1995) (Application of the common marmoset to pharmacological studies). Nippon Yakurigaku Zasshi 106:11–18

    PubMed  CAS  Google Scholar 

  80. Nomoto M, Kaseda S, Iwata S, Shimizu T, Fukuda T, Nakagawa S (2000) The metabolic rate and vulnerability of dopaminergic ­neurons, and adenosine dynamics in the cerebral cortex, nucleus accumbens, caudate nucleus, and putamen of the common marmoset. J Neurol 247 Suppl 5:V16-V22

    PubMed  Google Scholar 

  81. Eslamboli A, Baker HF, Ridley RM, Annett LE (2003) Sensorimotor deficits in a unilateral intrastriatal 6-OHDA partial lesion model of Parkinson’s disease in marmoset monkeys. Exp Neurol 183:418–429

    PubMed  CAS  Google Scholar 

  82. Svenningsson P, Arts J, Gunne L, Andren PE (2002) Acute and repeated treatment with L-DOPA increase c-jun expression in the 6-hydroxydopamine-lesioned forebrain of rats and common marmosets. Brain Res 955:8–15

    PubMed  CAS  Google Scholar 

  83. Petzinger GM, Fisher B, Hogg E, Abernathy A, Arevalo P, Nixon K, Jakowec MW (2006) Behavioral motor recovery in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned squirrel monkey (Saimiri sciureus): changes in striatal dopamine and expression of tyrosine hydroxylase and dopamine transporter proteins. J Neurosci Res 83:332–347

    PubMed  CAS  Google Scholar 

  84. Quik M, Cox H, Parameswaran N, O’Leary K, Langston JW, Di MD (2007) Nicotine reduces levodopa-induced dyskinesias in lesioned monkeys. Ann Neurol 62:588–596

    PubMed  CAS  Google Scholar 

  85. Quik M, Parameswaran N, McCallum SE, Bordia T, Bao S, McCormack A, Kim A, Tyndale RF, Langston JW, Di Monte DA (2006) Chronic oral nicotine treatment protects against striatal degeneration in MPTP-treated primates. J Neurochem 98:1866–1875

    PubMed  CAS  Google Scholar 

  86. Boyce S, Rupniak NM, Steventon MJ, Iversen SD (1990) Characterisation of dyskinesias induced by L-dopa in MPTP-treated squirrel monkeys. Psychopharmacology (Berl) 102:21–27

    CAS  Google Scholar 

  87. Visanji NP, Fox SH, Johnston TH, Millan MJ, Brotchie JM (2009) Alpha1-adrenoceptors mediate dihydroxyphenylalanine-induced activity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaques. J Pharmacol Exp Ther 328:276–283

    PubMed  CAS  Google Scholar 

  88. Hadj TA, Ekesbo A, Gregoire L, Bangassoro E, Svensson KA, Tedroff J, Bedard PJ (2001) Effects of acute and repeated treatment with a novel dopamine D2 receptor ligand on L-DOPA-induced dyskinesias in MPTP monkeys. Eur J Pharmacol 412:247–254

    Google Scholar 

  89. Hallett PJ, Brotchie JM (2007) Striatal delta opioid receptor binding in experimental models of Parkinson’s disease and dyskinesia. Mov Disord 22:28–40

    PubMed  Google Scholar 

  90. Raju DV, Ahern TH, Shah DJ, Wright TM, Standaert DG, Hall RA, Smith Y (2008) Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. Eur J Neurosci 27:1647–1658

    PubMed  Google Scholar 

  91. Heimer G, Bar-Gad I, Goldberg JA, Bergman H (2002) Dopamine replacement therapy reverses abnormal synchronization of pallidal neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine primate model of parkinsonism. J Neurosci 22:7850–7855

    PubMed  CAS  Google Scholar 

  92. Raz A, Feingold A, Zelanskaya V, Vaadia E, Bergman H (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 76:2083–2088

    PubMed  CAS  Google Scholar 

  93. Bjugstad KB, Teng YD, Redmond DE, Jr., Elsworth JD, Roth RH, Cornelius SK, Snyder EY, Sladek JR, Jr. (2008) Human neural stem cells migrate along the nigrostriatal pathway in a primate model of Parkinson’s disease. Exp Neurol 211:362–369

    PubMed  CAS  Google Scholar 

  94. Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons observed in Parkinson’s disease. Neuroscience 63:47–56

    PubMed  CAS  Google Scholar 

  95. Kowall NW, Hantraye P, Brouillet E, Beal MF, McKee AC, Ferrante RJ (2000) MPTP induces alpha-synuclein aggregation in the substantia nigra of baboons. Neuroreport 11:211–213

    PubMed  CAS  Google Scholar 

  96. Collins MA, Neafsey EJ (1985) Beta-carboline analogues of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP): endogenous factors underlying idiopathic parkinsonism? Neurosci Lett 55:179–184

    PubMed  CAS  Google Scholar 

  97. Lipina SJ, Colombo JA (2007) Premorbid exercising in specific cognitive tasks prevents impairment of performance in parkinsonian monkeys. Brain Res 1134:180–186

    PubMed  CAS  Google Scholar 

  98. Jakowec MW, Petzinger GM (2004) 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned model of parkinson’s disease, with emphasis on mice and nonhuman primates. Comp Med 54:497–513

    PubMed  CAS  Google Scholar 

  99. Moratalla R, Quinn B, DeLanney LE, Irwin I, Langston JW, Graybiel AM (1992) Differential vulnerability of primate caudate-putamen and striosome-matrix dopamine systems to the neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 89:3859–3863

    PubMed  CAS  Google Scholar 

  100. Stephenson DT, Meglasson MD, Connell MA, Childs MA, Hajos-Korcsok E, Emborg ME (2005) The effects of a selective dopamine D2 receptor agonist on behavioral and pathological outcome in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated squirrel monkeys. J Pharmacol Exp Ther 314:1257–1266

    PubMed  CAS  Google Scholar 

  101. Hodgson RA, Bedard PJ, Varty GB, Kazdoba TM, Di PT, Grzelak ME, Pond AJ, Hadjtahar A, Belanger N, Gregoire L, Dare A, Neustadt BR, Stamford AW, Hunter JC (2010) Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders. Exp Neurol 225:384–390

    PubMed  CAS  Google Scholar 

  102. Nomoto M, Kita S, Iwata SI, Kaseda S, Fukuda T (1998) Effects of acute or prolonged administration of cabergoline on parkinsonism induced by MPTP in common marmosets. Pharmacol Biochem Behav 59:717–721

    PubMed  CAS  Google Scholar 

  103. Fox SH, Henry B, Hill M, Crossman A, Brotchie J (2002) Stimulation of cannabinoid receptors reduces levodopa-induced dyskinesia in the MPTP-lesioned nonhuman primate model of Parkinson’s disease. Mov Disord 17:1180–1187

    PubMed  Google Scholar 

  104. Kuoppamaki M, Al-Barghouthy G, Jackson MJ, Smith LA, Quinn N, Jenner P (2007) L-dopa dose and the duration and severity of dyskinesia in primed MPTP-treated primates. J Neural Transm 114:1147–1153

    PubMed  CAS  Google Scholar 

  105. Pearce RK, Banerji T, Jenner P, Marsden CD (1998) De novo administration of ropinirole and bromocriptine induces less dyskinesia than L-dopa in the MPTP-treated marmoset. Mov Disord 13:234–241

    PubMed  CAS  Google Scholar 

  106. Loschmann PA, Smith LA, Lange KW, Jahnig P, Jenner P, Marsden CD (1992) Motor activity following the administration of selective D-1 and D-2 dopaminergic drugs to MPTP-treated common marmosets. Psychopharmacology (Berl) 109:49–56

    CAS  Google Scholar 

  107. Maratos EC, Jackson MJ, Pearce RK, Cannizzaro C, Jenner P (2003) Both short- and long-acting D-1/D-2 dopamine agonists induce less dyskinesia than L-DOPA in the MPTP-lesioned common marmoset (Callithrix jacchus). Exp Neurol 179:90–102

    PubMed  CAS  Google Scholar 

  108. Kebabian JW, Britton DR, DeNinno MP, Perner R, Smith L, Jenner P, Schoenleber R, Williams M (1992) A-77636: a potent and selective dopamine D1 receptor agonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 229:203–209

    PubMed  CAS  Google Scholar 

  109. Nomoto M, Jenner P, Marsden CD (1985) The dopamine D2 agonist LY 141865, but not the D1 agonist SKF 38393, reverses parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the common marmoset. Neurosci Lett 57:37–41

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Jenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jackson, M.J., Jenner, P. (2011). The MPTP-Treated Primate, with Specific Reference to the Use of the Common Marmoset (Callithrix jacchus). In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_20

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics