Skip to main content

Zebrafish as a Vertebrate Model Organism for Studying Movement Disorders

  • Protocol
  • First Online:
Book cover Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 61))

  • 1624 Accesses

Abstract

Zebrafish, Danio rerio, a subtropical vertebrate has, during the last decades, emerged as an important model organism in neurobiological and biomedical research. The zebrafish neurotransmitter systems, including major small molecular substances and neuropeptides and their receptors, are very similar with those of mammals. The small size of the fish at the time when active movement starts allows three-dimensional visualization of essentially all neurons, which contain specific markers. This allows detailed quantification of neurons of all important nuclei. This information can be correlated to fast kinematic analysis of, e.g., sensorimotor responses, and tracking of swimming episodes over longer periods of time. A large number of mutant fish with motor disturbances have been produced in genetic screens with alkylating agents and with retroviruses. Development of gene knock-out and transgenic fish has also become possible with TILLING or zinc finger nuclease methods. The easiest methods to modify gene expression include morpholino-modified oligonucleotides, which enable translation inhibition at best for several days. This method requires stringent controls and knowledge of non-specific off-target effects, which are common. Several genes that cause autosomal hereditary Parkinson’s disease have been identified and inactivated in zebrafish. The effects range from very mild to severe, some of which are likely non-specific. Well-controlled studies have given valuable information of basic functions of genes important in Parkinson’s disease and other human neurological diseases. The emergence of advanced gene modification methods, most obviously the gene knock-out and transgenic methods, is about to render zebrafish a very fast, quantifiable, and economic model to reveal basic functions of genes important for human neurological diseases.

This chapter deals with the neurotransmitter and CNS systems underlying locomotion, methods used to assess different behaviors in developing and adult zebrafish, and published research on genes relevant for movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westerfield M (2007) THE ZEBRAFISH BOOK, 5th Edition; A guide for the laboratory use of zebrafish (Danio rerio), vol. 5th. University of Oregon Press, Eugene.

    Google Scholar 

  2. Brustein E, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Drapeau P (2003) Steps during the development of the zebrafish locomotor network. J Physiol Paris 97:77–86.

    Article  PubMed  Google Scholar 

  3. Nieuwenhuys R, ten Donkelar HJ, Nicholson C (1998) The Central Nervous System of Vertebrates. Springer, Berlin.

    Google Scholar 

  4. Ito H, Yamamoto N (2009) Non-laminar cerebral cortex in teleost fishes? Biol Lett 5:117–121.

    Article  PubMed  Google Scholar 

  5. Nieuwenhuys R (1963) The Comparative Anatomy of the Actinopterygian Forebrain. J Hirnforsch 13:171–192.

    PubMed  CAS  Google Scholar 

  6. Nieuwenhuys R (2010) The development and general morphology of the telencephalon of actinopterygian fishes: synopsis, documentation and commentary. Brain Struct Funct.

    Google Scholar 

  7. Mueller T, Wullimann MF, Guo S (2008) Early teleostean basal ganglia development visualized by zebrafish Dlx2a, Lhx6, Lhx7, Tbr2 (eomesa), and GAD67 gene expression. J Comp Neurol 507:1245–1257.

    Article  PubMed  CAS  Google Scholar 

  8. Vargas JP, Lopez JC, Portavella M (2009) What are the functions of fish brain pallium? Brain Res Bull 79:436–440.

    Article  PubMed  Google Scholar 

  9. Portavella M, Torres B, Salas C, Papini MR (2004) Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362:75–78.

    Article  PubMed  CAS  Google Scholar 

  10. Portavella M, Torres B, Salas C (2004) Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24:2335–2342.

    Article  PubMed  CAS  Google Scholar 

  11. Isa T (2002) Intrinsic processing in the mammalian superior colliculus. Curr Opin Neurobiol 12:668–677.

    Article  PubMed  CAS  Google Scholar 

  12. Sato T, Hamaoka T, Aizawa H, Hosoya T, Okamoto H (2007) Genetic single-cell mosaic analysis implicates ephrinB2 reverse signaling in projections from the posterior tectum to the hindbrain in zebrafish. J Neurosci 27:5271–5279.

    Article  PubMed  CAS  Google Scholar 

  13. Del Bene F, Wyart C, Robles E, Tran A, Looger L, Scott EK, Isacoff EY, Baier H (2010) Filtering of visual information in the tectum by an identified neural circuit. Science 330:669–673.

    Article  PubMed  Google Scholar 

  14. Rink E, Wullimann MF (2001) The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 889:316–330.

    Article  PubMed  CAS  Google Scholar 

  15. Kaslin J, Panula P (2001) Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 440:342–377.

    Article  PubMed  CAS  Google Scholar 

  16. Rink E, Wullimann MF (2004) Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res 1011:206–220.

    Article  PubMed  CAS  Google Scholar 

  17. Sallinen V, Torkko V, Sundvik M, Reenila I, Khrustalyov D, Kaslin J, Panula P (2009) MPTP and MPP+ target specific aminergic cell populations in larval zebrafish. J Neurochem 108:719–731.

    Article  PubMed  CAS  Google Scholar 

  18. Scholpp S, Lumsden A (2010) Building a bridal chamber: development of the thalamus. Trends Neurosci 33:373–380.

    Article  PubMed  CAS  Google Scholar 

  19. Ikenaga T, Yoshida M, Uematsu K (2006) Cerebellar efferent neurons in teleost fish. Cerebellum 5:268–274.

    Article  PubMed  CAS  Google Scholar 

  20. Bae YK, Kani S, Shimizu T, Tanabe K, Nojima H, Kimura Y, Higashijima S, Hibi M (2009) Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev Biol 330:406–426.

    Article  PubMed  CAS  Google Scholar 

  21. Burgess HA, Granato M (2007) Sensorimotor gating in larval zebrafish. J Neurosci 27:4984–4994.

    Article  PubMed  CAS  Google Scholar 

  22. O’Malley DM, Kao YH, Fetcho JR (1996) Imaging the functional organization of zebrafish hindbrain segments during escape behaviors. Neuron 17:1145–1155.

    Article  PubMed  Google Scholar 

  23. Orger MB, Kampff AR, Severi KE, Bollmann JH, Engert F (2008) Control of visually guided behavior by distinct populations of spinal projection neurons. Nat Neurosci 11:327–333.

    Article  PubMed  CAS  Google Scholar 

  24. Szobota S, Gorostiza P, Del Bene F, Wyart C, Fortin DL, Kolstad KD, Tulyathan O, Volgraf M, Numano R, Aaron HL, Scott EK, Kramer RH, Flannery J, Baier H, Trauner D, Isacoff EY (2007) Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54:535–545.

    Article  PubMed  CAS  Google Scholar 

  25. Douglass AD, Kraves S, Deisseroth K, Schier AF, Engert F (2008) Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr Biol 18:1133–1137.

    Article  PubMed  CAS  Google Scholar 

  26. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S, Jang S, Haggarty SJ, Kokel D, Rubin LL, Peterson RT, Schier AF (2010) Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–351.

    Article  PubMed  CAS  Google Scholar 

  27. Panula P, Chen YC, Priyadarshini M, Kudo S, Semenova S, Sundvik M, Sallinen V (2010) The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 40:46–57.

    Article  PubMed  CAS  Google Scholar 

  28. Ruuskanen JO, Xhaard H, Marjamaki A, Salaneck E, Salminen T, Yan YL, Postlethwait JH, Johnson MS, Larhammar D, Scheinin M (2004) Identification of duplicated fourth alpha2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Mol Biol Evol 21:14–28.

    Article  PubMed  CAS  Google Scholar 

  29. Ruuskanen JO, Peitsaro N, Kaslin JV, Panula P, Scheinin M (2005) Expression and function of alpha-adrenoceptors in zebrafish: drug effects, mRNA and receptor distributions. J Neurochem 94:1559–1569.

    Article  PubMed  CAS  Google Scholar 

  30. Haas H, Panula P (2003) The role of histamine and the tuberomamillary nucleus in the nervous system. Nat Rev Neurosci 4:121–130.

    Article  PubMed  CAS  Google Scholar 

  31. Peitsaro N, Sundvik M, Anichtchik OV, Kaslin J, Panula P (2007) Identification of zebrafish histamine H1, H2 and H3 receptors and effects of histaminergic ligands on behavior. Biochem Pharmacol 73:1205–1214.

    Article  PubMed  CAS  Google Scholar 

  32. Candy J, Collet C (2005) Two tyrosine hydroxylase genes in teleosts. Biochim Biophys Acta 1727:35–44.

    PubMed  CAS  Google Scholar 

  33. Chen YC, Priyadarshini M, Panula P (2009) Complementary developmental expression of the two tyrosine hydroxylase transcripts in zebrafish. Histochem Cell Biol 132:375–381.

    Article  PubMed  CAS  Google Scholar 

  34. Sallinen V, Kolehmainen J, Priyadarshini M, Toleikyte G, Chen YC, Panula P (2010) Dopaminergic cell damage and vulnerability to MPTP in Pink1 knockdown zebrafish. Neurobiol Dis 40:93–101.

    Article  PubMed  CAS  Google Scholar 

  35. Anichtchik O, Sallinen V, Peitsaro N, Panula P (2006) Distinct structure and activity of monoamine oxidase in the brain of zebrafish (Danio rerio). J Comp Neurol 498:593–610.

    Article  PubMed  CAS  Google Scholar 

  36. Sallinen V, Sundvik M, Reenila I, Peitsaro N, Khrustalyov D, Anichtchik O, Toleikyte G, Kaslin J, Panula P (2009) Hyperserotonergic phenotype after monoamine oxidase inhibition in larval zebrafish. J Neurochem 109:403–415.

    Article  PubMed  CAS  Google Scholar 

  37. Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P (2004) Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 88:443–453.

    Article  PubMed  CAS  Google Scholar 

  38. Clemente D, Porteros A, Weruaga E, Alonso JR, Arenzana FJ, Aijon J, Arevalo R(2004) Cholinergic elements in the zebrafish central nervous system: Histochemical and immunohistochemical analysis. J Comp Neurol 474:75–107.

    Article  PubMed  Google Scholar 

  39. Kaslin J, Nystedt JM, Ostergard M, Peitsaro N, Panula P (2004) The orexin/hypocretin system in zebrafish is connected to the aminergic and cholinergic systems. J Neurosci 24:2678–2689.

    Article  PubMed  CAS  Google Scholar 

  40. Mueller T, Vernier P, Wullimann MF (2004) The adult central nervous cholinergic system of a neurogenetic model animal, the zebrafish Danio rerio. Brain Res 1011:156–169.

    Article  PubMed  CAS  Google Scholar 

  41. Budick SA, O’Malley DM (2000) Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. J Exp Biol 203:2565–2579.

    PubMed  CAS  Google Scholar 

  42. Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF (2006) Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J Neurosci 26:13400–13410.

    Article  PubMed  CAS  Google Scholar 

  43. Zhdanova IV (2006) Sleep in zebrafish. Zebrafish 3:215–226.

    Article  PubMed  CAS  Google Scholar 

  44. Granato M, van Eeden FJ, Schach U, Trowe T, Brand M, Furutani-Seiki M, Haffter P, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C (1996) Genes controlling and mediating locomotion behavior of the zebrafish embryo and larva. Development 123:399–413.

    PubMed  CAS  Google Scholar 

  45. Burgess HA, Schoch H, Granato M (2010) Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Curr Biol 20:381–386.

    Article  PubMed  CAS  Google Scholar 

  46. Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539.

    Article  PubMed  Google Scholar 

  47. Gahtan E, Tanger P, Baier H (2005) Visual prey capture in larval zebrafish is controlled by identified reticulospinal neurons downstream of the tectum. J Neurosci 25:9294–9303.

    Article  PubMed  CAS  Google Scholar 

  48. Peitsaro N, Kaslin J, Anichtchik OV, Panula P (2003) Modulation of the histaminergic system and behaviour by alpha-fluoromethylhistidine in zebrafish. J Neurochem 86:432–441.

    Article  PubMed  CAS  Google Scholar 

  49. Cachat J, Stewart A, Grossman L, Gaikwad S, Kadri F, Chung KM, Wu N, Wong K, Roy S, Suciu C, Goodspeed J, Elegante M, Bartels B, Elkhayat S, Tien D, Tan J, Denmark A, Gilder T, Kyzar E, Dileo J, Frank K, Chang K, Utterback E, Hart P, Kalueff AV (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5:1786–1799.

    Article  PubMed  CAS  Google Scholar 

  50. Stewart A, Wu N, Cachat J, Hart P, Gaikwad S, Wong K, Utterback E, Gilder T, Kyzar E, Newman A, Carlos D, Chang K, Hook M, Rhymes C, Caffery M, Greenberg M, Zadina J, Kalueff AV (2011) Pharmacological modulation of anxiety-like phenotypes in adult zebrafish behavioral models. Prog Neuropsychopharmacol Biol Psychiatry 35:1421–1431.

    Google Scholar 

  51. Brockerhoff SE, Hurley JB, Janssen-Bienhold U, Neuhauss SC, Driever W, Dowling JE (1995) A behavioral screen for isolating zebrafish mutants with visual system defects. Proc Natl Acad Sci USA 92:10545–10549.

    Article  PubMed  CAS  Google Scholar 

  52. Muto A, Orger MB, Wehman AM, Smear MC, Kay JN, Page-McCaw PS, Gahtan E, Xiao T, Nevin LM, Gosse NJ, Staub W, Finger-Baier K, Baier H (2005) Forward genetic analysis of visual behavior in zebrafish. PLoS Genet 1:e66.

    Article  PubMed  Google Scholar 

  53. Burgess HA, Johnson SL, Granato M (2009) Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. Genes Brain Behav 8:500–511.

    Article  PubMed  CAS  Google Scholar 

  54. McNeill MS, Paulsen J, Bonde G, Burnight E, Hsu MY, Cornell RA (2007) Cell death of melanophores in zebrafish trpm7 mutant embryos depends on melanin synthesis. J Invest Dermatol 127:2020–2030.

    Article  PubMed  CAS  Google Scholar 

  55. Hermosura MC, Nayakanti H, Dorovkov MV, Calderon FR, Ryazanov AG, Haymer DS, Garruto RM (2005) A TRPM7 variant shows altered sensitivity to magnesium that may contribute to the pathogenesis of two Guamanian neurodegenerative disorders. Proc Natl Acad Sci USA 102:11510–11515.

    Article  PubMed  CAS  Google Scholar 

  56. Burns RS, Chiueh CC, Markey SP, Ebert MH, Jacobowitz DM, Kopin IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80:4546–4550.

    Article  PubMed  CAS  Google Scholar 

  57. Heikkila RE, Sonsalla PK (1987) The use of the MPTP-treated mouse as an animal model of parkinsonism. Can J Neurol Sci 14:436–440.

    PubMed  CAS  Google Scholar 

  58. Pollard HB, Dhariwal K, Adeyemo OM, Markey CJ, Caohuy H, Levine M, Markey S, Youdim MB (1992) A parkinsonian syndrome induced in the goldfish by the neurotoxin MPTP. FASEB J 6:3108–3116.

    PubMed  CAS  Google Scholar 

  59. Beal MF (2001) Experimental models of Parkinson’s disease. Nat Rev Neurosci 2:325–334.

    Article  PubMed  CAS  Google Scholar 

  60. Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, Podlasz P (2006) Modulatory neurotransmitter systems and behavior: towards zebrafish models of neurodegenerative diseases. Zebrafish 3:235–247.

    Article  PubMed  CAS  Google Scholar 

  61. Panula P, Yang HY, Costa E (1984) Histamine-containing neurons in the rat hypothalamus. Proc Natl Acad Sci USA 81:2572–2576.

    Article  PubMed  CAS  Google Scholar 

  62. Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28:585–610.

    Article  PubMed  CAS  Google Scholar 

  63. Eriksson KS, Peitsaro N, Karlstedt K, Kaslin J, Panula P (1998) Development of the histaminergic neurons and expression of histidine decarboxylase mRNA in the zebrafish brain in the absence of all peripheral histaminergic systems. Eur J Neurosci 10:3799–3812.

    Article  PubMed  CAS  Google Scholar 

  64. McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL (2005) Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res Mol Brain Res 141:128–137.

    Article  PubMed  CAS  Google Scholar 

  65. Lam CS, Korzh V, Strahle U (2005) Zebrafish embryos are susceptible to the dopaminergic neurotoxin MPTP. Eur J Neurosci 21:1758–1762.

    Article  PubMed  Google Scholar 

  66. Bretaud S, Lee S, Guo S (2004) Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864.

    Article  PubMed  CAS  Google Scholar 

  67. Thirumalai V, Cline HT (2008) Endogenous dopamine suppresses initiation of swimming in prefeeding zebrafish larvae. J Neurophysiol 100:1635–1648.

    Article  PubMed  CAS  Google Scholar 

  68. Rink E, Wullimann MF (2002) Development of the catecholaminergic system in the early zebrafish brain: an immunohistochemical study. Brain Res Dev Brain Res 137:89–100.

    Article  PubMed  CAS  Google Scholar 

  69. Filippi A, Mahler J, Schweitzer J, Driever W (2010) Expression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. J Comp Neurol 518:423–438.

    Article  PubMed  CAS  Google Scholar 

  70. Nayyar T, Bubser M, Ferguson MC, Neely MD, Shawn Goodwin J, Montine TJ, Deutch AY, Ansah TA (2009) Cortical serotonin and norepinephrine denervation in parkinsonism: preferential loss of the beaded serotonin innervation. Eur J Neurosci 30:207–216.

    Article  PubMed  Google Scholar 

  71. Vuckovic MG, Wood RI, Holschneider DP, Abernathy A, Togasaki DM, Smith A, Petzinger GM, Jakowec MW (2008) Memory, mood, dopamine, and serotonin in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. Neurobiol Dis 32:319–327.

    Article  PubMed  CAS  Google Scholar 

  72. Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131:120–131.

    PubMed  Google Scholar 

  73. Wen L, Wei W, Gu W, Huang P, Ren X, Zhang Z, Zhu Z, Lin S, Zhang B (2008) Visualization of monoaminergic neurons and neurotoxicity of MPTP in live transgenic zebrafish. Dev Biol 314:84–92.

    Article  PubMed  CAS  Google Scholar 

  74. Bretaud S, Allen C, Ingham PW, Bandmann O (2007) p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson’s disease. J Neurochem 100:1626–1635.

    PubMed  CAS  Google Scholar 

  75. Sheng D, Qu D, Kwok KH, Ng SS, Lim AY, Aw SS, Lee CW, Sung WK, Tan EK, Lufkin T, Jesuthasan S, Sinnakaruppan M, Liu J (2010) Deletion of the WD40 domain of LRRK2 in Zebrafish causes Parkinsonism-like loss of neurons and locomotive defect. PLoS Genet 6:e1000914.

    Article  PubMed  Google Scholar 

  76. Andres-Mateos E, Mejias R, Sasaki M, Li X, Lin BM, Biskup S, Zhang L, Banerjee R, Thomas B, Yang L, Liu G, Beal MF, Huso DL, Dawson TM, Dawson VL (2009) Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J Neurosci 29:15846–15850.

    Article  PubMed  CAS  Google Scholar 

  77. Anichtchik O, Diekmann H, Fleming A, Roach A, Goldsmith P, Rubinsztein DC (2008) Loss of PINK1 function affects development and results in neurodegeneration in zebrafish. J Neurosci 28:8199–8207.

    Article  PubMed  CAS  Google Scholar 

  78. Xi Y, Ryan J, Noble S, Yu M, Yilbas AE, Ekker M (2010) Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function. Eur J Neurosci 31:623–633.

    Article  PubMed  Google Scholar 

  79. Matsui H, Taniguchi Y, Inoue H, Kobayashi Y, Sakaki Y, Toyoda A, Uemura K, Kobayashi D, Takeda S, Takahashi R (2010) Loss of PINK1 in medaka fish (Oryzias latipes) causes late-onset decrease in spontaneous movement. Neurosci Res 66:151–161.

    Article  PubMed  CAS  Google Scholar 

  80. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160.

    Article  PubMed  CAS  Google Scholar 

  81. Kitada T, Pisani A, Porter DR, Yamaguchi H, Tscherter A, Martella G, Bonsi P, Zhang C, Pothos EN, Shen J (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446.

    Article  PubMed  CAS  Google Scholar 

  82. Flinn L, Mortiboys H, Volkmann K, Koster RW, Ingham PW, Bandmann O (2009) Complex I deficiency and dopaminergic neuronal cell loss in parkin-deficient zebrafish (Danio rerio). Brain 132:1613–1623.

    Article  PubMed  Google Scholar 

  83. Robu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC (2007) P53 Activation by Knockdown Technologies. PLoS Genet 3:e78.

    Article  PubMed  Google Scholar 

  84. Wienholds E, van Eeden F, Kosters M, Mudde J, Plasterk RH, Cuppen E (2003) Efficient target-selected mutagenesis in zebrafish. Genome Res 13:2700–2707.

    Article  PubMed  CAS  Google Scholar 

  85. Asakawa K, Suster ML, Mizusawa K, Nagayoshi S, Kotani T, Urasaki A, Kishimoto Y, Hibi M, Kawakami K (2008) Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish. Proc Natl Acad Sci USA 105:1255–1260.

    Article  PubMed  CAS  Google Scholar 

  86. Suster ML, Kikuta H, Urasaki A, Asakawa K, Kawakami K (2009) Transgenesis in zebrafish with the tol2 transposon system. Methods Mol Biol 561:41–63.

    Article  PubMed  CAS  Google Scholar 

  87. Halpern ME, Rhee J, Goll MG, Akitake CM, Parsons M, Leach SD (2008) Gal4/UAS transgenic tools and their application to zebrafish. Zebrafish 5:97–110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pertti Panula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sundvik, M., Panula, P. (2011). Zebrafish as a Vertebrate Model Organism for Studying Movement Disorders. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics