Skip to main content

Comparing Behavioral Assessment of Sensorimotor Function in Rat and Mouse Models of Parkinson’s Disease and Stroke

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 61))

  • 1669 Accesses

Abstract

To maximize the success of any translational research endeavor, sensitive and reliable behavioral outcome measures in valid animal models are essential. A common goal of preclinical studies in both Parkinson’s disease and stroke is to reduce or reverse sensorimotor impairments associated with damage to the striatum and sensorimotor cortex. Here, we describe several behavioral tests of sensorimotor function that have been shown to be sensitive to varying degrees of nigrostriatal and cortical damage in both rats and mice and are highly useful for preclinical studies of potential therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlsson A, Lindqvist M, Magnusson T (1957) 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180: 1200

    Google Scholar 

  2. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249: 1436–1438

    Google Scholar 

  3. Zivin JA, Fisher M, DeGirolami U, Hemenway CC, Stashak JA (1985) Tissue plasminogen activator reduces neurological damage after cerebral embolism. Science 230: 1289–1292

    Google Scholar 

  4. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5: 107–110

    Google Scholar 

  5. Ungerstedt U (1971) Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Act Physiol Scand Suppl 367: 95–122

    Google Scholar 

  6. Burns RS, Chiueh CC, Markey SP (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci USA 80: 4546–4550

    Google Scholar 

  7. Betarbet R, Sherer TB, MacKenzie G Ebert MH, Jacobowitz DM, Kopin IJ. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3: 1301–1306

    Google Scholar 

  8. Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ (1999) Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res 823: 1–10

    Google Scholar 

  9. Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD, Seaman RL, Chesselet MF (2004) Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187: 418–422

    Google Scholar 

  10. Marshall JF, Turner BH, Teitelbaum P (1971) Sensory neglect produced by lateral hypothalamic damage. Science 174: 523–525

    Google Scholar 

  11. Schallert T, Whishaw IQ, Ramirez VD, Teitelbaum P (1978) Compulsive, abnormal walking caused by anticholinergics in akinetic, 6-hydroxydopamine-treated rats. Science 199: 1461–1463

    Google Scholar 

  12. Tillerson JL, Cohen AD, Philhower J, Miller GW, Zigmond MJ, Schallert T (2001) Forced limb-use effects on the behavioral and neurochemical effects of 6-hydroxydopamine. J Neurosci 21: 4427–4435

    Google Scholar 

  13. Tillerson JL, Cohen AD, Caudle WM, Zigmond MJ, Schallert T, Miller GW (2002) Forced nonuse in unilateral parkinsonian rats exacerbates injury. J Neurosci 22: 6790–6799

    Google Scholar 

  14. Ogawa N, Hirose Y, Ohara S, Ono T, Watanabe Y (1985) A simple quantitative bradykinesia test in MPTP-treated mice. Res Commun Chem Pathol Pharmacol 50: 435–441

    Google Scholar 

  15. Heikkila RE, Hess A, Duvoisin RC (1984) Dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science 224: 1451–1453

    Google Scholar 

  16. Fleming SM, Delville Y, Schallert T (2005) An intermittent, controlled-rate, slow progressive degeneration model of Parkinson’s disease: antiparkinson effects of Sinemet and protective effects of methylphenidate. Behav Brain Res 156: 201–213

    Google Scholar 

  17. Tillerson JL, Caudle WM, Reverón ME, Miller GW (2002). Detection of behavioral impairments correlated to neurochemical deficits in mice treated with moderate doses of 1 methyl-4-phenyl 1,2,3,6-tetrahydropyridine. Exp Neurol 178: 80–90

    Google Scholar 

  18. Alam M, Schmidt WJ (2004) L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats. Behav Brain Res 153: 439–446

    Google Scholar 

  19. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E, et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2994: 256–259

    Google Scholar 

  20. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608

    Google Scholar 

  21. Krüger R, Kuhn W, Müller T, Woitalla D, Graeber M, Kösel S, Przuntek H, Epplen JT, Schöls L, Riess O (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18: 106–108

    Google Scholar 

  22. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Pike B, et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047

    Google Scholar 

  23. Singleton AB, Farrer M, Johnson J (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302: 841

    Google Scholar 

  24. Wintermeyer P, Krüger R, Kuhn W Müller T, Woitalla D, Berg D, et al. (2000) Mutation analysis and association studies of the UCHL1 gene in German Parkinson’s disease patients. Neuroreport 11: 2079–2078

    Google Scholar 

  25. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, et al. (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304: 1158–1160

    Google Scholar 

  26. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, et al. (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44: 601–7

    Google Scholar 

  27. Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D, Cid LP, et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38: 1184–1191

    Google Scholar 

  28. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science 287: 1265–1269

    Google Scholar 

  29. Rockenstein E, Mallory M, Hashimoto M, Song D, Shults CW, Lang I, Masliah E (2002) Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. J Neurosci Res 68: 568–578

    Google Scholar 

  30. Goldberg MS, Fleming SM, Palacino JJ, Capeda C, Lam HA, Bhatnagar A, et al. (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278: 43628–43635

    Google Scholar 

  31. Chen L, Cagniard B, Mathews T, Jones S, Koh HC, Ding Y, Carvey PM, Ling Z, Kang UJ, Zhuang X (2005) Age-dependent motor deficits and dopaminergic dysfunction in DJ-1 null mice. J Biol Chem 280: 21418–21426

    Google Scholar 

  32. Li Y, Liu W, Oo TF, Wang L, Tang Y, Jackson-Lewis V, et al. (2009) Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 12: 826–828

    Google Scholar 

  33. Watson BD, Dietrich WD, Busto R, Wachtel MS, Ginsberg MD (1985) Induction of reproducible brain infarction by photochemically initiated thrombosis. Ann Neurol 17: 497–504

    Google Scholar 

  34. Zhang L, Zhang ZG, Zhang RL, Lu M, Krams M, Chopp M (2003) Effects of a selective CD11b/CD18 antagonist and recombinant human tissue plasminogen activator treatment alone and in combination in a rat embolic model of stroke. Stroke 34: 1790–1795

    Google Scholar 

  35. Tamura A, Graham DI, McCulloch J, Teasdale GM (1981) Focal cerebral ischaemia in the rat: 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1: 53–56

    Google Scholar 

  36. Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39: 777–787

    Google Scholar 

  37. LeVere TE (1988) Neural system imbalances and the consequences of large brain injuries. In: Finger S, LeVere TE, Almi CR and Stein DG, eds. Brain Injury and Recovery, Theoretical and Controversial Issues. New York : Plennum Press, 15–28

    Google Scholar 

  38. Schallert T (1988) Aging-dependent emergence of sensorimotor dysfunction in rats recovered from dopamine depletion sustained early in life. Ann N Y Acad Sci 515: 108–120

    Google Scholar 

  39. Whishaw IQ (2000) Loss of the innate cortical engram for action patterns used in skilled reaching and the development of behavioral compensation following motor cortex lesions in the rat. Neuropharmacology 39: 788–805

    Google Scholar 

  40. Ariano MA, Grissell AE, Littlejohn FC Buchanan TM, Elsworth JD, Collier TJ, Steece-Collier K (2005) Partial dopamine loss enhances activated caspase-3 activity: differential outcomes in striatal projection systems. J Neurosci Res 82: 387–396

    Google Scholar 

  41. Johnson RE, Schallert T, Becker JB (1999) Akinesia and postural abnormality after unilateral dopamine depletion. Behav Brain Res 104: 189–196

    Google Scholar 

  42. Schallert T, Kozlowski DA, Humm JL, Cocke RR (1997) Use-dependent structural events in recovery of function. Adv Neurol 73: 229–238

    Google Scholar 

  43. Schallert T, Tillerson JL (2000) Intervention strategies for degeneration of dopamine neurons in parkinsonism: Optimizing behavioral assessment of outcome. In: Emerich DF, Dean RL III, Sandberg PR (eds), Central Nervous System Diseases. Totowa, NJ: Humana Press; 131–151

    Google Scholar 

  44. Schallert T, Woodlee MT (2005) Orienting and placing. In: Whishaw IQ, Kolb B (eds), The behavior of the laboratory rat. New York: Oxford University Press;129–140

    Google Scholar 

  45. Li X, Blizzard KK, Zeng Z, DeVries AC, Hurn PD, McCullough LD (2004) Chronic behavioral testing after focal ischemia in the mouse: functional recovery and the effects of gender. Exp Neurol 187: 94–104

    Google Scholar 

  46. Kawamata T, Dietrich WD, Schallert T, Gotts JE, Cocke RR, Benowitz LI, Finklestein SP (1997) Intracisternal basic fibroblast growth factor enhances functional recovery and ­up-regulates the expression of a molecular marker of neuronal sprouting following focal cerebral infarction. Proc Natl Acad Sci USA 94: 8179–8184

    Google Scholar 

  47. Yang M, Stull ND, Berk MA, Snyder EY, Iacovitti L (2002) Neural stem cells spontaneously express dopaminergic traits after transplantation into the intact or 6-hydroxydopamine-lesioned rat. Exp Neurol 177: 50–60

    Google Scholar 

  48. Kozlowski DA, Connor B, Tillerson JL, Schallert T, Bohn MC (2000) Delivery of a GDNF gene into the substantia nigra after a progressive 6-OHDA lesion maintains functional nigrostriatal connections. Exp Neurol 166: 1–15

    Google Scholar 

  49. Connor B, Kozlowski DA, Schallert T, Tillerson JL, Davidson BL, Bohn MC (1999) Differential effects of glial cell line-derived neurotrophic factor (GDNF) in the striatum and substantia nigra of the aged Parkinsonian rat. Gene Ther 6: 1936–1951

    Google Scholar 

  50. Luo J, Kaplitt MG, Fitzsimons HL, Zuzga DS, Liu Y, Oshinsky ML, During MJ (2002) Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 298: 425–429

    Google Scholar 

  51. Shi LH, Woodward DJ, Luo F, Anstrom K, Schallert T, Chang JY (2004) High-frequency stimulation of the subthalamic nucleus reverses limb-use asymmetry in rats with unilateral 6-hydroxydopamine lesions. Brain Res 1013: 98–106

    Google Scholar 

  52. Chan CS, Glajch KE, Gertler TS, Guzman JN, Mercer JN, Lewis AS, et al (2011) HCN channelopathy in external globus pallidus neurons in models of Parkinson’s disease. Nat Neurosci14: 85–92

    Google Scholar 

  53. Schallert T (2006) Behavioral tests for preclinical intervention assessment. NeuroRx 3: 497–504

    Google Scholar 

  54. Fleming SM, Salcedo J, Fernagut PO, Rockenstein E, Masliah E, Levine MS, Chesselet MF (2004) Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. J Neurosci 24: 9434–9340

    Google Scholar 

  55. Hwang DY, Fleming SM, Ardayfio P, Moran-Gates T, Kim H, Tarazi FI, Chesselet MF, Kim KS (2005) 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci 25: 2132–2137

    Google Scholar 

  56. Lu XH, Fleming SM, Meurers B, Ackerson LC, Mortazavi F, Lo V, et al (2009) Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-synuclein. J Neurosci 29: 1962–1967

    Google Scholar 

  57. Goldberg NR, Haack AK, Lim NS, Janson OK, Meshul CK (2011) Dopaminergic and behavioral correlates of progressive lesioning of the nigrostriatal pathway with 1-methyl-4-phenyl-1,2,3,6-tetrahydroppyridine. Neuroscience180: 256–271

    Google Scholar 

  58. Schallert T, Upchurch M, Lobaugh N, Farrar SB, Spirduso WW, Gilliam P, Vaughn DM, Wilcox RE (1982) Tactile extinction: distinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage. Pharmacol Biochem Behav 16: 455–462

    Google Scholar 

  59. Schallert T, Upchurch M, Wilcox RE, Vaughn DM (1983) Posture-independent sensorimotor analysis of inter-hemispheric receptor asymmetries in neostriatum. Pharmacol Biochem Behav. 18: 753–759

    Google Scholar 

  60. Barth TM, Jones TA, Schallert T (1990) Functional subdivisions of the rat somatic sensorimotor cortex. Behav Brain Res 39: 73–79

    Google Scholar 

  61. Woodlee MT, Asseo-Garcia AM, Zhao X, Liu SJ, Jones TA, Schallert T (2005) Testing forelimb placing “across the midline” reveals distinct, lesion-dependent patterns of recovery in rats. Exp Neurol 191: 310–317.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Schallert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fleming, S.M., Schallert, T. (2011). Comparing Behavioral Assessment of Sensorimotor Function in Rat and Mouse Models of Parkinson’s Disease and Stroke. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics