Skip to main content

6-OHDA Lesion Models of Parkinson’s Disease in the Rat

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 61))

Abstract

The 6-hydroxydopamine (6-OHDA) lesion of the rat nigrostriatal pathway is the most widely used animal model of Parkinson’s disease. 6-OHDA is a highly specific neurotoxin which targets catecholamine neurones via the dopamine active transporter (DAT). When injected stereotaxically into the brain, either into the median forebrain bundle (MFB) or into the neostriatum, it causes extensive, irreversible loss of dopamine neurones in the ventral midbrain. The corresponding loss of dopamine innervation in target areas is associated with a range of long-term, behavioural deficits that form the target of experimental therapies, aimed at protecting or restoring dopaminergic deficits. In this chapter, the two most widely used 6-OHDA lesion protocols are described: (1) The MFB lesion that results in >97% unilateral depletion of dopamine neurones, principally in the ipsilateral striatum and nucleus accumbens. (2) The unilateral striatal lesion resulting in partial dopamine denervation of the striatum only. In vivo assessment of both lesion types by drug-induced rotation is also covered.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur. J. Pharmacol. 5: 107–110

    Article  PubMed  CAS  Google Scholar 

  2. Bjorklund A, Wiklund L, Descarries L (1981) Regeneration and plasticity of central serotoninergic neurons: a review. J. Physiol (Paris) 77: 247–255

    CAS  Google Scholar 

  3. Zigmond MJ, Stricker EM (1973) Recovery of feeding and drinking by rats after intraventricular 6-hydroxydopamine or lateral hypothalamic lesions. Science 182: 717–720

    Article  PubMed  CAS  Google Scholar 

  4. Kirik D, Rosenblad C, Bjorklund A (1998) Characterization of behavioral and neuro-degenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp.Neurol. 152: 259–277

    Article  PubMed  CAS  Google Scholar 

  5. Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59: 401–415

    Article  PubMed  CAS  Google Scholar 

  6. Kelly PH, Roberts DC (1983) Effects of amphetamine and apomorphine on locomotor activity after 6-OHDA and electrolytic lesions of the nucleus accumbens septi. Pharmacol. Biochem. Behav. 19: 137–143

    Article  PubMed  CAS  Google Scholar 

  7. Ungerstedt U (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behaviour. Acta Physiol Scand. Suppl 367: 49–68

    PubMed  CAS  Google Scholar 

  8. Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand. Suppl 367: 69–93

    PubMed  CAS  Google Scholar 

  9. Dunnett SB, Bjorklund A, Stenevi U, Iversen SD (1981) Grafts of embryonic substantia nigra reinnervating the ventrolateral striatum ameliorate sensorimotor impairments and akinesia in rats with 6-OHDA lesions of the nigrostriatal pathway. Brain Res. 229: 209–217

    Article  PubMed  CAS  Google Scholar 

  10. Dowd E, Monville C, Torres EM, Wong LF, Azzouz M, Mazarakis ND, Dunnett SB (2005) Lentivector-mediated delivery of GDNF protects complex motor functions relevant to human Parkinsonism in a rat lesion model. Eur.J.Neurosci. 22: 2587–2595

    Article  PubMed  Google Scholar 

  11. Kirik D, Georgievska B, Rosenblad C, Bjorklund A (2001) Delayed infusion of GDNF promotes recovery of motor function in the partial lesion model of Parkinson’s disease. Eur. J. Neurosci. 13: 1589–1599

    Article  PubMed  CAS  Google Scholar 

  12. Torres EM, Dunnett SB (2007) Amphetamine induced rotation in the assessment of lesio ns and grafts in the unilateral rat model of Parkinson’s disease. Eur. Neuropsycho-pharmacol. 17: 206–214

    Article  PubMed  CAS  Google Scholar 

  13. Bjorklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD (1980) Reinnervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological and sensorimotor testing. Brain Res. 199: 307–333

    Article  PubMed  CAS  Google Scholar 

  14. Torres EM, Monville C, Lowenstein PR, Castro MG, Dunnett SB (2005) Delivery of sonic hedgehog or glial derived neurotrophic factor to dopamine-rich grafts in a rat model of Parkinson’s disease using adenoviral vectors. Increased yield of dopamine cells is dependent on embryonic donor age. Brain Res. Bull. 68: 31–41

    Article  PubMed  CAS  Google Scholar 

  15. Iczkiewicz J, Broom L, Cooper JD, Wong AM, Rose S, Jenner P (2010) The RGD-containing peptide fragment of osteopontin protects tyrosine hydroxylase positive cells against toxic insult in primary ventral mesencephalic cultures and in the rat substantia nigra. J. Neurochem.

    Google Scholar 

  16. Suzuki K, Okada K, Wakuda T, Shinmura C, Kameno Y, Iwata K, Takahashi T, Suda S, Matsuzaki H, Iwata Y, Hashimoto K, Mori N (2010) Destruction of dopaminergic neurons in the midbrain by 6-hydroxydopamine decreases hippocampal cell proliferation in rats: reversal by fluoxetine. PLoS. One. 5: e9260

    Article  PubMed  Google Scholar 

  17. Li Y, Huang XF, Deng C, Meyer B, Wu A, Yu Y, Ying W, Yang GY, Yenari MA, Wang Q (2010) Alterations in 5-HT2A receptor binding in various brain regions among 6-hydroxydopamine-induced Parkinsonian rats. Synapse 64: 224–230

    Article  PubMed  CAS  Google Scholar 

  18. Shim JS, Kim HG, Ju MS, Choi JG, Jeong SY, Oh MS (2009) Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson’s disease. J. Ethnopharmacol. 126: 361–365

    Article  PubMed  Google Scholar 

  19. Lehmkuhle MJ, Bhangoo SS, Kipke DR (2009) The electrocorticogram signal can be modulated with deep brain stimulation of the subthalamic nucleus in the hemiparkinsonian rat. J. Neurophysiol. 102: 1811–1820

    Article  PubMed  CAS  Google Scholar 

  20. Goren B, Mimbay Z, Bilici N, Zarifoglu M, Ogul E, Korfali E (2009) Investigation of neuroprotective effects of cyclooxygenase inhibitors in the 6-hydroxydopamine induced rat Parkinson model. Turk. Neurosurg. 19: 230–236

    PubMed  Google Scholar 

  21. Mertens B, Massie A, Michotte Y, Sarre S (2009) Effect of nigrostriatal damage induced by 6-hydroxydopamine on the expression of glial cell line-derived neurotrophic factor in the striatum of the rat. Neuroscience 162: 148–154

    Article  PubMed  CAS  Google Scholar 

  22. Wang S, Zhang QJ, Liu J, Wu ZH, Wang T, Gui ZH, Chen L, Wang Y (2009) Unilateral lesion of the nigrostriatal pathway induces an increase of neuronal firing of the midbrain raphe nuclei 5-HT neurons and a decrease of their response to 5-HT(1A) receptor stimulation in the rat. Neuroscience 159: 850–861

    Article  PubMed  CAS  Google Scholar 

  23. Gu S, Huang H, Bi J, Yao Y, Wen T (2009) Combined treatment of neurotrophin-3 gene and neural stem cells is ameliorative to behavior recovery of Parkinson’s disease rat model. Brain Res. 1257: 1–9

    Article  PubMed  CAS  Google Scholar 

  24. Jadavji NM, Metz GA (2009) Both pre- and post-lesion experiential therapy is beneficial in 6-hydroxydopamine dopamine-depleted female rats. Neuroscience 158: 373–386

    Article  PubMed  CAS  Google Scholar 

  25. Chung EK, Chen LW, Chan YS, Yung KK (2008) Downregulation of glial glutamate transporters after dopamine denervation in the striatum of 6-hydroxydopamine-lesioned rats. J. Comp Neurol. 511: 421–437

    Article  PubMed  CAS  Google Scholar 

  26. Warraich ST, Allbutt HN, Billing R, Radford J, Coster MJ, Kassiou M, Henderson JM (2009) Evaluation of behavioural effects of a selective NMDA NR1A/2B receptor antagonist in the unilateral 6-OHDA lesion rat model. Brain Res.Bull. 78: 85–90

    Article  PubMed  CAS  Google Scholar 

  27. Pierucci M, Di M, V, Benigno A, Crescimanno G, Esposito E, Di Giovanni G (2009) The unilateral nigral lesion induces dramatic bilateral modification on rat brain monoamine neurochemistry. Ann. N.Y. Acad. Sci. 1155: 316–323

    Article  PubMed  CAS  Google Scholar 

  28. Parr-Brownlie LC, Poloskey SL, Bergstrom DA, Walters JR (2009) Parafascicular thalamic nucleus activity in a rat model of Parkinson’s disease. Exp. Neurol. 217: 269–281

    Article  PubMed  Google Scholar 

  29. Song L, Kong M, Ma Y, Ba M, Liu Z (2009) Inhibitory effect of 8-(3-chlorostryryl) caffeine on levodopa-induced motor fluctuation is associated with intracellular signaling pathway in 6-OHDA-lesioned rats. Brain Res. 1276: 171–179

    Article  PubMed  CAS  Google Scholar 

  30. Jimenez A, Bonastre M, Aguilar E, Marin C (2009) Effect of the metabotropic glutamate antagonist MPEP on striatal expression of the Homer family proteins in levodopa-treated hemiparkinsonian rats. Psychopharmacology (Berl) 206: 233–242

    Article  CAS  Google Scholar 

  31. Avila I, Reilly MP, Sanabria F, Posadas-Sanchez D, Chavez CL, Banerjee N, Killeen P, Castaneda E (2009) Modeling operant behavior in the Parkinsonian rat. Behav. Brain Res. 198: 298–305

    Article  PubMed  Google Scholar 

  32. Casteels C, Lauwers E, Baitar A, Bormans G, Baekelandt V, Van Laere K (2010) In vivo type 1 cannabinoid receptor mapping in the 6-hydroxydopamine lesion rat model of Parkinson’s disease. Brain Res. 1316: 153–162

    Article  PubMed  CAS  Google Scholar 

  33. Nikkhah G, Rosenthal C, Falkenstein G, Roedter A, Papazoglou A, Brandis A (2009) Microtransplantation of dopaminergic cell suspensions: further characterization and optimization of grafting parameters. Cell Transplant. 18: 119–133

    Article  PubMed  Google Scholar 

  34. Rauch F, Schwabe K, Krauss JK (2010) Effect of deep brain stimulation in the pedunculopontine nucleus on motor function in the rat 6-hydroxydopamine Parkinson model. Behav.Brain Res. 210: 46–53

    Article  PubMed  Google Scholar 

  35. Jungnickel J, Kalve I, Reimers L, Nobre A, Wesemann M, Ratzka A, Halfer N, Lindemann C, Schwabe K, Tollner K, Gernert M, Grothe C (2011) Topology of intrastriatal dopaminergic grafts determines functional and emotional outcome in neurotoxin-lesioned rats. Behav.Brain Res. 216: 129–135

    Article  PubMed  CAS  Google Scholar 

  36. Silvestrin RB, de Oliveira LF, Batassini C, Oliveira A, Souza TM (2009) The footfault test as a screening tool in the 6-hydroxydopamine rat model of Parkinson’s disease. J. Neurosci.Methods 177: 317–321

    Article  PubMed  CAS  Google Scholar 

  37. Bordia T, Campos C, Huang L, Quik M (2008) Continuous and intermittent nicotine treatment reduces L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesias in a rat model of Parkinson’s disease. J. Pharmacol. Exp. Ther. 327: 239–247

    Article  PubMed  CAS  Google Scholar 

  38. Torres EM, et al. (2011) Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates. J. Neurosci. Methods 200: 29–35

    Google Scholar 

Download references

Acknowledgements

Our experiments in this field are supported by grants from the UK Medical Research Council, Parkinson’s UK, and the European Union Seventh Framework TransEUro, Replaces and NeuroStemCell programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. Torres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Torres, E.M., Dunnett, S.B. (2011). 6-OHDA Lesion Models of Parkinson’s Disease in the Rat. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics