Skip to main content

Genetic Models of Parkinson’s Disease

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 61))

  • 1723 Accesses

Abstract

Parkinson’s disease (PD) is a chronic, progressive neurodegenerative movement disorder. To understand the pathomechanisms and to develop new drugs and therapies for PD, it is important to have animal models that recapitulate the slow progression and symptoms of the disease. The generation of genetic animal models of genes responsible for autosomal dominant but also autosomal recessive forms of PD has indeed accelerated our understanding of these pathomechanisms. To model the effect of dominant mutant alleles, transgenic mice were produced that express mutation-bearing proteins in neurons. To model loss-of-function alleles, knockout mice were generated and studied. However, none of these models recapitulate PD disease as it occurs in PD patients. The latest mouse genetic technology may offer, at least in part, a relief for these challenges through the timed control of protein expression or gene knockout. Both can be achieved by the use of the Tamoxifen inducible CreERT2 gene switch that enables the inducible activation of transgene expression or inducible gene knockout. Thereby the CreERT2 system can be used to generate genetic models of gain-of-function (dominant) disease-associated alleles by the regulated expression of mutant coding regions as well as to model loss-of-function (recessive) disease-associated alleles by inducible gene knockout. In this chapter, we cover the design of such Tamoxifen inducible transgene constructs and the use of premade conditional knockout alleles generated by large-scale mutagenesis projects. Furthermore, we provide an overview of the available brain-specific CreERT2 mouse lines, notes on the control groups for inducible knockout experiments and a protocol for Tamoxifen administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlsson A, Lindqvist M, Magnusson TOR (1957) 3,4-Dihydroxyphenylalanine and 5-Hydroxytryptophan as Reserpine Antagonists. Nature 180(4596):1200–1200.

    Article  PubMed  CAS  Google Scholar 

  2. Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20(7):398–399.

    Article  PubMed  CAS  Google Scholar 

  3. Ungerstedt U, Arbuthnott GW (1970) Quantitative recording of rotational behavior in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res 24(3):485–493.

    Article  PubMed  CAS  Google Scholar 

  4. Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central monoamine neurons. Eur J Pharmacol 5(1):107–110.

    Article  PubMed  CAS  Google Scholar 

  5. Sonsalla PK, Heikkila RE (1988) Neurotoxic effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine in several strains of mice. Prog Neuropsychopharmacol Biol Psychiatry 12(2–3):345–354.

    Article  PubMed  CAS  Google Scholar 

  6. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3(12):1301–1306.

    Article  PubMed  CAS  Google Scholar 

  7. McCormack AL, Thiruchelvam M, Manning-Bog AB, Thiffault C, Langston JW, Cory-Slechta DA, Di Monte DA (2002) Environmental risk factors and Parkinson’s disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat. Neurobiol Dis 10(2):119–127.

    Article  PubMed  CAS  Google Scholar 

  8. Jenner P (2008) Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Ann Neurol 64 Suppl 2:S16–29.

    PubMed  CAS  Google Scholar 

  9. Schapira AH, Tolosa E (2010) Molecular and clinical prodrome of Parkinson disease: implications for treatment. Nat Rev Neurol 6(6):309–317.

    Article  PubMed  CAS  Google Scholar 

  10. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211.

    Article  PubMed  Google Scholar 

  11. Cookson MR, Bandmann O (2010) Parkinson’s disease: insights from pathways. Hum Mol Genet 19(R1):R21–27.

    Google Scholar 

  12. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047.

    Article  PubMed  CAS  Google Scholar 

  13. Simon-Sanchez J, Schulte C, Bras JM, Sharma M, Gibbs JR, Berg D, et al. (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312.

    Article  PubMed  CAS  Google Scholar 

  14. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX, et al. (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264(5166):1772–1775.

    Article  PubMed  CAS  Google Scholar 

  15. Kokjohn TA, Roher AE (2009) Amyloid precursor protein transgenic mouse models and Alzheimer’s disease: understanding the paradigms, limitations, and contributions. Alzheimers Dement 5(4):340–347.

    Article  PubMed  CAS  Google Scholar 

  16. Dawson TM, Ko HS, Dawson VL (2010) Genetic Animal Models of Parkinson’s Disease. Neuron 66(5):646–661.

    Article  PubMed  CAS  Google Scholar 

  17. Zigmond MJ, Berger TW, Grace AA, Stricker EM (1989) Compensatory responses to nigrostriatal bundle injury. Studies with 6-hydroxydopamine in an animal model of parkinsonism. Mol Chem Neuropathol 10(3):185–200.

    Article  PubMed  CAS  Google Scholar 

  18. Calne DB, Zigmond MJ (1991) Compensatory mechanisms in degenerative neurologic diseases. Insights from parkinsonism. Arch Neurol 48(4):361–363.

    Article  PubMed  CAS  Google Scholar 

  19. Anastassiadis K, Glaser S, Kranz A, Berhardt K, Stewart AF (A practical summary of site-specific recombination, conditional mutagenesis, and tamoxifen induction of CreERT2. Methods Enzymol 477:109–123.

    Google Scholar 

  20. Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363.

    Article  PubMed  CAS  Google Scholar 

  21. Parkitna JR, Engblom D, Schutz G (2009) Generation of Cre recombinase-expressing transgenic mice using bacterial artificial chromosomes. Methods Mol Biol 530:325–342.

    Article  PubMed  CAS  Google Scholar 

  22. Kawamoto S, Niwa H, Tashiro F, Sano S, Kondoh G, Takeda J, Tabayashi K, Miyazaki J (2000) A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett 470(3):263–268.

    Article  PubMed  CAS  Google Scholar 

  23. Luche H, Weber O, Nageswara Rao T, Blum C, Fehling HJ (2007) Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur J Immunol 37(1):43–53.

    Article  PubMed  CAS  Google Scholar 

  24. Mao X, Fujiwara Y, Orkin SH (1999) Improved reporter strain for monitoring Cre recombinase-mediated DNA excisions in mice. Proc Natl Acad Sci USA 96(9):5037–5042.

    Article  PubMed  CAS  Google Scholar 

  25. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593–605.

    Article  PubMed  CAS  Google Scholar 

  26. Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71.

    Article  PubMed  CAS  Google Scholar 

  27. Srinivas S, Watanabe T, Lin CS, William CM, Tanabe Y, Jessell TM, Costantini F (2001) Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev Biol 1:4.

    Article  PubMed  CAS  Google Scholar 

  28. Yamamoto M, Shook NA, Kanisicak O, Yamamoto S, Wosczyna MN, Camp JR, Goldhamer DJ (2009) A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis 47(2):107–114.

    Article  PubMed  CAS  Google Scholar 

  29. Rodriguez P, Da Silva S, Oxburgh L, Wang F, Hogan BL, Que J (BMP signaling in the development of the mouse esophagus and forestomach. Development 137(24):4171–4176.

    Google Scholar 

  30. Santiago Y, Chan E, Liu PQ, Orlando S, Zhang L, Urnov FD,et al. (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA 105(15):5809–5814.

    Article  PubMed  CAS  Google Scholar 

  31. Capecchi MR (2005) Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat Rev Genet 6(6):507–512.

    Article  PubMed  CAS  Google Scholar 

  32. Gong M, Rong YS (2003) Targeting multi-cellular organisms. Curr Opin Genet Dev 13(2):215–220.

    Article  PubMed  CAS  Google Scholar 

  33. Lai L, Prather RS (2003) Creating genetically modified pigs by using nuclear transfer. Reprod Biol Endocrinol 1:82.

    Article  PubMed  Google Scholar 

  34. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, et al. (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26(6):702–708.

    Article  PubMed  CAS  Google Scholar 

  35. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM, et al. (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433.

    Article  PubMed  CAS  Google Scholar 

  36. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. (2009) Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol 27(9):851–857.

    Article  PubMed  CAS  Google Scholar 

  37. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23(8):967–973.

    Article  PubMed  CAS  Google Scholar 

  38. Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, Jamieson AC, Porteus MH, Gregory PD, Holmes MC (2005) Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435(7042):646–651.

    Article  PubMed  CAS  Google Scholar 

  39. Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64–67.

    Google Scholar 

  40. Meyer M, de Angelis MH, Wurst W, Kuhn R (Gene targeting by homologous recombination in mouse zygotes mediated by zinc-finger nucleases. Proc Natl Acad Sci USA 107(34):15022–15026.

    Google Scholar 

  41. Delic S, Streif S, Deussing JM, Weber P, Ueffing M, Holter SM, Wurst W, Kuhn R (2008) Genetic Mouse Models for Behavioral Analysis through Transgenic RNAi Technology. Genes Brain Behav.

    Google Scholar 

  42. Hitz C, Wurst W, Kuhn R (2007) Conditional brain-specific knockdown of MAPK using Cre/loxP regulated RNA interference. Nucleic Acids Res 35(12):e90.

    Article  PubMed  Google Scholar 

  43. Sambrook J, Macallum P, Russell D (2001) Molecular Cloning: A Laboratory Manual (Cold Spring Harbour Press, Cold Spring Harbour) 3. Ed.

    Google Scholar 

  44. Reid SW, Tessarollo L (2009) Isolation, microinjection and transfer of mouse blastocysts. Methods Mol Biol 530:269–285.

    Article  PubMed  CAS  Google Scholar 

  45. Friedel RH, Seisenberger C, Kaloff C, Wurst W (2007) EUCOMM--the European conditional mouse mutagenesis program. Brief Funct Genomic Proteomic 6(3):180–185.

    Article  PubMed  CAS  Google Scholar 

  46. Kranz A, Fu J, Duerschke K, Weidlich S, Naumann R, Stewart AF, Anastassiadis K (An improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase. Genesis 48(8):512–520.

    Google Scholar 

  47. Pettitt SJ, Liang Q, Rairdan XY, Moran JL, Prosser HM, Beier DR, Lloyd KC, Bradley A, Skarnes WC (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods 6(7):493–495.

    Article  PubMed  CAS  Google Scholar 

  48. te Riele H, Maandag ER, Berns A (1992) Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DNA constructs. Proc Natl Acad Sci USA 89(11):5128–5132.

    Article  Google Scholar 

  49. Hitz C, Steuber-Buchberger P, Delic S, Wurst W, Kuhn R (2009) Generation of shRNA transgenic mice. Methods Mol Biol 530:101–129.

    Article  PubMed  CAS  Google Scholar 

  50. Eggan K, Akutsu H, Loring J, Jackson-Grusby L, Klemm M, Rideout WM, Yanagimachi R, Jaenisch R (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci USA 98(11):6209–6214.

    Article  PubMed  CAS  Google Scholar 

  51. Southon E, Tessarollo L (2009) Manipulating mouse embryonic stem cells. Methods Mol Biol 530:165–185.

    Article  PubMed  CAS  Google Scholar 

  52. Rodriguez CI, Buchholz F, Galloway J, Sequerra R, Kasper J, Ayala R, Stewart AF, Dymecki SM (2000) High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nat Genet 25(2):139–140.

    Article  PubMed  CAS  Google Scholar 

  53. Nagy A, Mar L, Watts G (2009) Creation and use of a cre recombinase transgenic database. Methods Mol Biol 530:365–378.

    Article  PubMed  CAS  Google Scholar 

  54. Friedel RH, Wurst W, Wefers B, Kuhn R (2010) Generating conditional knockout mice. Methods Mol Biol 693:205–231.

    Article  Google Scholar 

  55. Schmidt-Supprian M, Rajewsky K (2007) Vagaries of conditional gene targeting. Nat Immunol 8(7):665–668.

    Article  PubMed  CAS  Google Scholar 

  56. Vogt MA, Chourbaji S, Brandwein C, Dormann C, Sprengel R, Gass P (2008) Suitability of tamoxifen-induced mutagenesis for behavioral phenotyping. Exp Neurol 211(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  57. Erdmann G, Schutz G, Berger S (2007) Inducible gene inactivation in neurons of the adult mouse forebrain. BMC Neurosci 8:63.

    Article  PubMed  Google Scholar 

  58. Kiermayer C, Conrad M, Schneider M, Schmidt J, Brielmeier M (2007) Optimization of spatiotemporal gene inactivation in mouse heart by oral application of tamoxifen citrate. Genesis 45(1):11–16.

    Article  PubMed  CAS  Google Scholar 

  59. Hirrlinger PG, Scheller A, Braun C, Hirrlinger J, Kirchhoff F (2006) Temporal control of gene recombination in astrocytes by transgenic expression of the tamoxifen-inducible DNA recombinase variant CreERT2. Glia 54(1):11–20.

    Article  PubMed  Google Scholar 

  60. Casper KB, Jones K, McCarthy KD (2007) Characterization of astrocyte-specific conditional knockouts. Genesis 45(5):292–299.

    Article  PubMed  CAS  Google Scholar 

  61. Mori T, Tanaka K, Buffo A, Wurst W, Kuhn R, Gotz M (2006) Inducible gene deletion in astroglia and radial glia--a valuable tool for functional and lineage analysis. Glia 54(1):21–34.

    Article  PubMed  Google Scholar 

  62. Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006) Temporal regulation of Cre recombinase activity in neural stem cells. Genesis 44(5):233–238.

    Article  PubMed  CAS  Google Scholar 

  63. Leone DP, Genoud S, Atanasoski S, Grausenburger R, Berger P, Metzger D, Macklin WB, Chambon P, Suter U (2003) Tamoxifen-inducible glia-specific Cre mice for somatic mutagenesis in oligodendrocytes and Schwann cells. Mol Cell Neurosci 22(4):430–440.

    Article  PubMed  CAS  Google Scholar 

  64. Doerflinger NH, Macklin WB, Popko B (2003) Inducible site-specific recombination in myelinating cells. Genesis 35(1):63–72.

    Article  PubMed  CAS  Google Scholar 

  65. Gu X, Yan Y, Li H, He D, Pleasure SJ, Zhao C (2009) Characterization of the Frizzled10-CreER transgenic mouse: an inducible Cre line for the study of Cajal-Retzius cell development. Genesis 47(3):210–216.

    Article  PubMed  CAS  Google Scholar 

  66. Zhao J, Nassar MA, Gavazzi I, Wood JN (2006) Tamoxifen-inducible NaV1.8-CreERT2 recombinase activity in nociceptive neurons of dorsal root ganglia. Genesis 44(8):364–371.

    Article  PubMed  CAS  Google Scholar 

  67. el Marjou F, Janssen KP, Chang BH, Li M, Hindie V, Chan L, Louvard D, Chambon P, Metzger D, Robine S (2004) Tissue-specific and inducible Cre-mediated recombination in the gut epithelium. Genesis 39(3):186–193.

    Google Scholar 

  68. Weber T, Bohm G, Hermann E, Schutz G, Schonig K, Bartsch D (2009) Inducible gene manipulations in serotonergic neurons. Front Mol Neurosci 2:24.

    PubMed  Google Scholar 

  69. Lemberger T, Parlato R, Dassesse D, Westphal M, Casanova E, Turiault M, Tronche F, Schiffmann SN, Schutz G (2007) Expression of Cre recombinase in dopaminoceptive neurons. BMC Neurosci 8:4.

    Article  PubMed  Google Scholar 

  70. Liu C, Maejima T, Wyler SC, Casadesus G, Herlitze S, Deneris ES (Pet-1 is required across different stages of life to regulate serotonergic function. Nat Neurosci 13(10):1190–1198.

    Google Scholar 

  71. Stanke M, Duong CV, Pape M, Geissen M, Burbach G, Deller T, Gascan H, Otto C, Parlato R, Schutz G, Rohrer H (2006) Target-dependent specification of the neurotransmitter phenotype: cholinergic differentiation of sympathetic neurons is mediated in vivo by gp 130 signaling. Development 133(1):141–150.

    Article  PubMed  CAS  Google Scholar 

  72. Lobe CG, Koop KE, Kreppner W, Lomeli H, Gertsenstein M, Nagy A (1999) Z/AP, a double reporter for cre-mediated recombination. Dev Biol 208(2):281–292.

    Article  PubMed  CAS  Google Scholar 

  73. Novak A, Guo C, Yang W, Nagy A, Lobe CG (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28(3–4):147–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wurst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kühn, R., Vogt-Weisenhorn, D., Wurst, W. (2011). Genetic Models of Parkinson’s Disease. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics