Skip to main content

Optical Approaches to Studying the Basal Ganglia

  • Protocol
  • First Online:
Animal Models of Movement Disorders

Part of the book series: Neuromethods ((NM,volume 61))

Abstract

Altered synaptic integration is a major factor for many neurological disorders involving the basal ganglia, including Parkinson’s disease and Huntington’s disease. Despite the fact that most synaptic integration occurs within dendrites, nearly all we know about the physiology of basal ganglia neurons comes from somatic measurements. This is particularly true of neurons in the striatum, the major input nucleus of the basal ganglia. Principal spiny projection neurons (SPNs) of the striatum have fine caliber dendrites that are inaccessible using traditional patch-clamp electrodes. Two-photon laser scanning microscopy (2PLSM) and two-photon laser uncaging (2PLU) offer alternative strategies for studying synaptic integration in basal ganglia neurons, like SPNs. These methods also allow subcellular organelles like mitochondria to be monitored in physiologically meaningful settings. Combining these approaches with electrophysiological and optogenetic methodologies builds a powerful arsenal of investigational tools. This chapter describes how optical methodologies are being applied to the study of the basal ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larkman AU (1991) Dendritic morphology of pyramidal neurones of the visual cortex of the rat: III. Spine distributions. J Comp Neurol 306: 332–343

    Google Scholar 

  2. Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30: 228–235

    Google Scholar 

  3. Wilson CJ (1992) Dendritic morphology, inward rectification, and the functional properties of neostriatal neurons. In: McKenna T, Davis, J, Zornetzer SF (ed) Single Neuron Computation. Academic Press, New York, 141–171

    Google Scholar 

  4. Magee JC, Johnston D (1995) Synaptic activation of voltage-gated channels in the dendrites of hippocampal pyramidal neurons. Science 268: 301–304

    Google Scholar 

  5. Stuart G, Spruston N, Sakmann B, Hausser M (1997) Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci 20: 125–131

    Google Scholar 

  6. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367: 69–72

    Google Scholar 

  7. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248: 73–76

    Google Scholar 

  8. Wokosin D, Squirrell JM, Eliceiri KW, White JG (2003) Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Review of Scientific Instruments 74: 193–201

    Google Scholar 

  9. Svoboda K, Denk W, Kleinfeld D, Tank DW (1997) In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385: 161–165

    Google Scholar 

  10. Svoboda K, Tank DW, Denk W (1996) Direct measurement of coupling between dendritic spines and shafts. Science 272: 716–719

    Google Scholar 

  11. Yuste R, Denk W (1995) Dendritic spines as basic functional units of neuronal integration. Nature 375: 682–684

    Google Scholar 

  12. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21: 1369–1377

    Google Scholar 

  13. Svoboda K, Yasuda R (2006) Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50: 823–839

    Google Scholar 

  14. Oheim M, Beaurepaire E, Chaigneau E, Mertz J, Charpak S (2001) Two-photon microscopy in brain tissue: parameters influencing the imaging depth. J Neurosci Meth 111: 29–37

    Google Scholar 

  15. Wokosin DL (2008) Nonlinear excitation fluorescence microscopy: source considerations for biological applications In: Clarkson WA, Hodgson N, Shori RH (eds), Solid State Lasers XVII: Technology and Devices (Proceedings of SPIE), pp 1–11.

    Google Scholar 

  16. Wokosin DL, Centonze V, White JG, Armstrong D, Robertson G, Ferguson AI (1996) All-solid-state ultra-fast lasers facilitate multi-photon excitation fluorescence imaging. IEEE J Sel Top Quant Electron 2: 1051–1065

    Google Scholar 

  17. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci 15: 133–139

    Google Scholar 

  18. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurons: chemical, physiological and morphological characterization. Trends Neurosci 18: 527–535

    Google Scholar 

  19. Tepper JM, Wilson CJ, Koos T (2008) Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res Rev 58: 272–281

    Google Scholar 

  20. Smith Y, Bevan MD, Shink E, Bolam JP (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86: 353–387

    Google Scholar 

  21. Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC, Matsuda W, Kaneko T (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33: 668–677

    Google Scholar 

  22. Gertler TS, Chan CS, Surmeier DJ (2008) Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci 28: 10814–10824

    Google Scholar 

  23. Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445: 643–647

    Google Scholar 

  24. Lobo MK, Covington HE, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330: 385–390

    Google Scholar 

  25. Koos T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2: 467–472

    Google Scholar 

  26. Plotkin JL, Wu N, Chesselet MF, Levine MS (2005) Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs. Eur J Neurosci 22: 1097–1108

    Google Scholar 

  27. Day M, Wokosin D, Plotkin JL, Tian X, Surmeier DJ (2008) Differential excitability and modulation of striatal medium spiny neuron dendrites. J Neurosci 28: 11603–11614

    Google Scholar 

  28. Heintz N (2004) Gene expression nervous system atlas (GENSAT). Nat Neurosci 7: 483

    Google Scholar 

  29. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization. J Neural Transm Suppl 36: 43–59

    Google Scholar 

  30. Gittis AH, Nelson AB, Thwin MT, Palop JJ, Kreitzer AC (2010) Distinct roles of GABAergic interneurons in the regulation of striatal output pathways. J Neurosci 30: 2223–2234

    Google Scholar 

  31. Freiman I, Anton A, Monyer H, Urbanski MJ, Szabo B (2006) Analysis of the effects of cannabinoids on identified synaptic connections in the caudate-putamen by paired recordings in transgenic mice. J Physiol 575: 789–806

    Google Scholar 

  32. Bloodgood BL, Sabatini BL (2007) Nonlinear regulation of unitary synaptic signals by CaV(2.3) voltage-sensitive calcium channels located in dendritic spines. Neuron 53: 249–260

    Google Scholar 

  33. Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44: 483–493

    Google Scholar 

  34. Conchello JA, Lichtman JW (2005) Optical sectioning microscopy. Nat Methods 2: 920–931

    Google Scholar 

  35. Shaw J (2006) Comparison of widefield/Deconvolution and confocal microscopy for three dimensional imaging. In Pawley JB (ed) Handbook of Biological Confocal Miicroscopy, 3rd edn. Springer, New York, 453–467

    Google Scholar 

  36. Holmes TJ, O’Connor N.J (2000) Blind Deconvolution of 3D Transmitted Light Brightfield Micrographs. J. Microsc 200: 114–127

    Google Scholar 

  37. Levoy M (1988) Display of surfaces from volume data. IEEE Comp Graph Applic 8: 29–37

    Google Scholar 

  38. Meißner M, Huang J, Bartz D, Mueller K, Crawfis R (2000) A practical evaluation of four popular volume rendering algorithms. In: Proc. of Symposium on Volume Visualization and Graphics. ACM Press 81–90

    Google Scholar 

  39. Lorensen, WE, Cline HE (1987) Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics 21: 163–169

    Google Scholar 

  40. Cabral B, Cam N, Roran J (1994) in Proceedings of the Symposium on Volume Visualization. 91–98 (ACM Press)

    Google Scholar 

  41. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33: 121–129

    Google Scholar 

  42. Lee MC, Yasuda R, Ehlers MD (2010) Metaplasticity at single glutamatergic synapses. Neuron 66: 859–870

    Google Scholar 

  43. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429: 761–766

    Google Scholar 

  44. Tanaka J. Horiike Y, Matsuzaki M, Miyazaki T, Ellis-Davies GC, Kasai H (2008) Protein synthesis and neurotrophin-dependent structural plasticity of single dendritic spines. Science 319: 1683–1687

    Google Scholar 

  45. Tepper JM, Sharpe NA, Koos TZ, Trent F (1998) Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev Neurosci 20: 125–145

    Google Scholar 

  46. Wilson CJ, Groves PM (1980) Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. J Comp Neurol 194: 599–615

    Google Scholar 

  47. Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275: 209–213

    Google Scholar 

  48. Nakamura T, Barbara JG, Nakamura K, Ross WN (1999) Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials. Neuron 24: 727–737

    Google Scholar 

  49. Nakamura T, Nakamura K, Lasser-Ross N, Barbara JG, Sandler VM, Ross WN (2000) Inositol 1,4,5-trisphosphate (IP3) -mediated Ca2+ release evoked by metabotropic agonists and backpropagating action potentials in hippocampal CA1 pyramidal neurons. J Neurosci 20: 8365–8376

    Google Scholar 

  50. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64: 313–353

    Google Scholar 

  51. Gee KR, Brown KA, Chen WN, Bishop-Stewart J, Gray D, Johnson I (2000) Chemical and physiological characterization of fluo-4 Ca(2+) -indicator dyes. Cell Calcium 27: 97–106

    Google Scholar 

  52. Minta A, Kao JP, Tsien RY (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264: 8171–8178

    Google Scholar 

  53. Murphy SN, Thayer SA, Miller RJ (1987) The effects of excitatory amino acids on intracellular calcium in single mouse striatal neurons in vitro. J Neurosci 7: 4145–4158

    Google Scholar 

  54. Murphy SN, Miller RJ (1989) Regulation of Ca++ influx into striatal neurons by kainic acid. J Pharmacol Exp Ther 249: 184–193

    Google Scholar 

  55. Garaschuk O, Milos RI, Konnerth A (2006) Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo. Nat Prot 1: 380–386

    Google Scholar 

  56. Carter AG, Soler-Llavina GJ, Sabatini BL (2007) Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J Neurosci 27: 8967–8977

    Google Scholar 

  57. Soler-Llavina GJ, Sabatini BL (2006) Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9: 798–806

    Google Scholar 

  58. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, Meredith GE, Surmeier DJ (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447: 1081–1086

    Google Scholar 

  59. Guzman JN, Sanchez-Padilla J, Chan CS, Surmeier DJ (2009) Robust pacemaking in substantia nigra dopaminergic neurons. J Neurosci 29: 11011–11019

    Google Scholar 

  60. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468: 696–700

    Google Scholar 

  61. Kawaguchi Y (1997) Neostriatal cell subtypes and their functional roles. Neurosci Res 27: 1–8

    Google Scholar 

  62. Tepper JM, Sawyer SF, Groves PM (1987) Electrophysiologically identified nigral dopaminergic neurons intracellularly labeled with HRP: light-microscopic analysis. J Neurosci 7: 2794–2806

    Google Scholar 

  63. Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog Brain Res 85: 119–146

    Google Scholar 

  64. Parent M, Parent A (2006) Single-axon tracing study of corticostriatal projections arising from primary motor cortex in primates. J Comp Neurol 496: 202–213

    Google Scholar 

  65. Higley MJ, Sabatini BL (2010) Competitive regulation of synaptic Ca2+ influx by D2 dopamine and A2A adenosine receptors. Nat Neurosci 13: 958–966

    Google Scholar 

  66. Canepari M, Nelson L, Papageorgiou G, Corrie JE, Ogden D (2001) Photochemical and pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters. J Neurosci Methods 112: 29–42

    Google Scholar 

  67. Huang YH, Sinha SR, Fedoryak OD, Ellis-Davies GC, Bergles DE (2005) Synthesis and characterization of 4-methoxy-7-nitroindolinyl-D-aspartate, a caged compound for selective activation of glutamate transporters and N-methyl-D-aspartate receptors in brain tissue. Biochemistry 44: 3316–3326

    Google Scholar 

  68. Matsuzaki M, Ellis-Davies GC, Nemoto T, Miyashita Y, Iino M, Kasai H (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4: 1086–1092

    Google Scholar 

  69. Doig NM, Moss J, Bolam JP (2010) Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. The Journal of neuroscience : the official journal of the Society for Neuroscience 30: 14610–14618

    Google Scholar 

  70. Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 13: 259–265

    Google Scholar 

  71. Ellis-Davies GC (2008) Neurobiology with caged calcium. Chem Rev 108: 1603–1613

    Google Scholar 

  72. Kaplan JH, Somlyo AP (1989) Flash photolysis of caged compounds: new tools for cellular physiology. Trends Neurosci 12: 54–59

    Google Scholar 

  73. Shigeri Y, Tatsu Y, Yumoto N (2001) Synthesis and application of caged peptides and proteins. Pharmacol Ther 91: 85–92

    Google Scholar 

  74. Sarkisov DV, Gelber SE, Walker JW, Wang SS (2007) Synapse specificity of calcium release probed by chemical two-photon uncaging of inositol 1,4,5-trisphosphate. J Biol Chem 282: 25517–25526

    Google Scholar 

  75. Zhu J, Chu CT (2010) Mitochondrial dysfunction in Parkinson’s disease. J Alz Dis 20,Suppl 2: S325–334

    Google Scholar 

  76. Schapira AH (2010) Future strategies for neuroprotection in Parkinson’s disease. Neurodegener Dis 7: 210–212

    Google Scholar 

  77. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80: 315–360

    Google Scholar 

  78. Foster KA, Galeffi F, Gerich FJ, Turner DA, Muller M (2006) Optical and pharmacological tools to investigate the role of mitochondria during oxidative stress and neurodegeneration. Prog Neurobiol 79: 136–171

    Google Scholar 

  79. Zorov DB, Kobrinsky E, Juhaszova M, Sollott SJ (2004) Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Circ Res 95: 239–252

    Google Scholar 

  80. Nicholls DG (2002) Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol 34: 1372–1381

    Google Scholar 

  81. Nicholls DG (2002) Bioenergetics. 3 edn, Academic Press, New York

    Google Scholar 

  82. Lambert AJ, Brand M. D (2009) Reactive oxygen species production by mitochondria. Meth Mol Biol 554: 165–181

    Google Scholar 

  83. Dooley CT Dore TM, Hanson GT Jackson WC, Remington SJ Tsien RY (2004) Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. J Biol Chem 279: 22284–22293

    Google Scholar 

  84. Hanson GT, Aggeler R Oglesbee D, Cannon M Capaldi RA, Tsien RY, Remington SJ (2004) Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem 279: 13044–13053

    Google Scholar 

  85. Deisseroth K (2011) Optogenetics. Nat Meth 8: 26–29

    Google Scholar 

  86. Diester I, Kaufman MT, Mogri M, Pashaie R, Goo W, Yizhar O, Ramakrishnan C, Deisseroth K, Shenoy KV (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14: 387–397

    Google Scholar 

  87. Hegemann P, Moglich A (2011) Channelrhodopsin engineering and exploration of new optogenetic tools. Nat Meth 8: 39–42

    Google Scholar 

  88. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100: 13940–13945

    Google Scholar 

  89. Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99: 8689–8694

    Google Scholar 

  90. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscie 8: 1263–1268

    Google Scholar 

  91. Lanyi JK. Halorhodopsin: a light-driven chloride ion pump (1986) Annu Rev Biophys Biophys Chem 15: 11–28

    Google Scholar 

  92. Zhang F, Gradinaru V, Adamantidis AR, Durand R, Airan RD, de Lecea L, Deisseroth K (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Prot 5: 439–456

    Google Scholar 

  93. Zhang F, Wang LP, Boyden ES, Deisseroth K (2006) Channelrhodopsin-2 and optical control of excitable cells. Nat Meth 3: 785–792

    Google Scholar 

  94. Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2, e299

    Google Scholar 

  95. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446: 633–639

    Google Scholar 

  96. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, Diester I, Goshen I, Thompson KR, Deisseroth K (2010) Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141: 154–165

    Google Scholar 

  97. Knopfel T, Lin MZ, Levskaya A, Tian L, Lin JY, Boyden ES (2010) Toward the second generation of optogenetic tools. J Neurosci 30: 14998–15004

    Google Scholar 

  98. Kemp JM, Powell TP (1971) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond B 262: 429–439

    Google Scholar 

  99. Kitai ST, Kocsis JD, Wood J (1976) Origin and characteristics of the cortico-caudate afferents: an anatomical and electrophysiological study. Brain Res 118: 137–141

    Google Scholar 

  100. McGeorge AJ, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29: 503–537

    Google Scholar 

  101. Smith Y, Bennett BD, Bolam JP, Parent A, Sadikot AF (1994) Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J Comp Neurol 344: 1–19

    Google Scholar 

  102. Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457: 1142–1145

    Google Scholar 

  103. Cruikshank SJ, Urabe H, Nurmikko AV, Connors BW (2010) Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron 65: 230–245

    Google Scholar 

  104. Ren J, Qin C, Hu F, Tan J, Qiu L, Zhao S, Feng G, Luo M (2011) Habenula “cholinergic” neurons corelease glutamate and acetylcholine and activate postsynaptic neurons via distinct transmission modes. Neuron 69: 445–452

    Google Scholar 

  105. Schoenenberger P, Scharer YP, Oertner TG (2011) Channelrhodopsin as a tool to investigate synaptic transmission and plasticity. Exp Physiol 96: 34–39

    Google Scholar 

  106. Schoenenberger P, Grunditz A, Rose T, Oertner TG (2008) Optimizing the spatial resolution of Channelrhodopsin-2 activation. Brain Cell Biol 36: 119–127

    Google Scholar 

  107. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Meth 2: 932–940

    Google Scholar 

  108. Peron S, Svoboda K (2011) From cudgel to scalpel: toward precise neural control with optogenetics. Nat Meth 8: 30–34

    Google Scholar 

  109. Rickgauer JP, Tank DW (2009) Two-photon excitation of channelrhodopsin-2 at saturation. Proc Natl Acad Sci USA 106: 15025–15030

    Google Scholar 

  110. Andrasfalvy BK, Zemelman BV, Tang J, Vaziri A (2010) Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc Natl Acad Sci USA 107: 11981–11986

    Google Scholar 

  111. Papagiakoumou E, Anselmi F, Bègue A, de Sars V, Glückstad J, Isacoff EY, Emiliani V (2010) Scanless two-photon excitation of channelrhodopsin-2. Nat Meth 7: 848–854

    Google Scholar 

  112. Shoham S (2010) Optogenetics meets optical wavefront shaping. Nat Meth 7: 798–799

    Google Scholar 

  113. Peterka DS, Takahashi H, Yuste R (2011) Imaging voltage in neurons. Neuron 69: 9–21

    Google Scholar 

  114. Antic S, Cohen LB, Lam YW, Wachowiak M, Zecevic D, Zochowski M (1999) Fast multisite optical measurement of membrane potential: three examples. FASEB J 13, Suppl 2: S271-276

    Google Scholar 

  115. Stuart GJ, Palmer LM (2006) Imaging membrane potential in dendrites and axons of single neurons. Pflugers Arch 453: 403–410

    Google Scholar 

  116. Bradley J, Luo R, Otis TS, DiGregorio DA (2009) Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J Neurosci 29: 9197–9209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. James Surmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Plotkin, J.L., Guzman, J.N., Schwarz, N., Kress, G., Wokosin, D.L., Surmeier, D.J. (2011). Optical Approaches to Studying the Basal Ganglia. In: Lane, E., Dunnett, S. (eds) Animal Models of Movement Disorders. Neuromethods, vol 61. Humana Press. https://doi.org/10.1007/978-1-61779-298-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-298-4_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-297-7

  • Online ISBN: 978-1-61779-298-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics