Skip to main content

Investigating Receptors for Extracellular Heat Shock Proteins

  • Protocol
  • First Online:
Book cover Molecular Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 787))

Abstract

Extracellular heat shock proteins (HSP) play important roles in cell signaling and immunity. Many of these effects are mediated by cell surface receptors expressed on a wide range of cell types. We have investigated the nature of such proteins by cloning candidate receptors into cells (CHO-K1) with the rare property of being null for HSP binding. Using this approach, we have discovered that Hsp70 binds to a least two classes of receptor: c-type lectin receptors (CLR) and scavenger receptors (SR). However, the nature of the receptor–ligand interactions is not yet clear. Hsp70 can bind to LOX-1 (a member of both the CLR and SR), with the c-type lectin binding domain (CTLD) as well as the SR family members SREC-I and FEEL-1/CLEVER-1/STABILIN-1, which by contrast have arrays of EGF-like repeats in their extracellular domains. In this chapter, we discuss (1) methods for determining HSP receptors, (2) approaches to study of individual receptors in cells that contain multiple such receptors, and (3) methods for investigating HSP receptor function in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calderwood SK, Mambula SS, Gray PJ, Jr., Theriault JR. Extracellular heat shock proteins in cell signaling. FEBS Lett 2007;581(19):3689–94.

    Google Scholar 

  2. Pockley AG. Heat shock proteins, inflammation, and cardiovascular disease. Circulation 2002;105(8):1012–7.

    Google Scholar 

  3. Pockley AG, Shepherd J, Corton JM. Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol Invest 1998;27(6):367–77.

    Google Scholar 

  4. Mambula SS, Calderwood SK. Heat induced release of Hsp70 from prostate carcinoma cells involves both active secretion and passive release from necrotic cells. Int J Hyperthermia 2006;22(7):575–85.

    Google Scholar 

  5. Mambula SS, Calderwood SK. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J Immunol 2006;177(11):7849–57.

    Google Scholar 

  6. Matzinger P. The danger model: a renewed sense of self. Science 2002;296(5566):301–5.

    Google Scholar 

  7. Vabulas RM, Ahmad-Nejad P, da Costa C, et al. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 2001;276(33):31332–9.

    Google Scholar 

  8. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H. HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J Biol Chem 2002;277(17):15107–12.

    Google Scholar 

  9. Asea A, Rehli M, Kabingu E, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002;277(17):15028–34.

    Google Scholar 

  10. Asea A, Kraeft SK, Kurt-Jones EA, et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000;6(4):435–42.

    Google Scholar 

  11. Henderson B, Calderwood SK, Coates AR, et al. Caught with their PAMPs down? The extracellular signalling actions of molecular chaperones are not due to microbial contaminants. Cell Stress Chaperones 2009.

    Google Scholar 

  12. Singh-Jasuja H, Toes RE, Spee P, et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J Exp Med 2000;191(11):1965–74.

    Google Scholar 

  13. Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002;20:395–425.

    Google Scholar 

  14. Rock KL. The ins and outs of cross-presentation. Nat Immunol 2003;4(10):941–3.

    Google Scholar 

  15. Multhoff G. Activation of natural killer cells by heat shock protein 70. Int J Hyperthermia 2002;18(6):576–85.

    Google Scholar 

  16. Multhoff G, Hightower LE. Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1996;1(3):167–76.

    Google Scholar 

  17. van Eden W, van der Zee R, Prakken B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 2005;5(4):318–30.

    Google Scholar 

  18. Berwin B, Delneste Y, Lovingood RV, Post SR, Pizzo SV. SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem 2004;279(49):51250–7.

    Google Scholar 

  19. Berwin B, Hart JP, Rice S, et al. Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. Embo J 2003;22(22):6127–36.

    Google Scholar 

  20. Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol 2000;1(2):151–5.

    Google Scholar 

  21. Delneste Y, Magistrelli G, Gauchat J, et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002;17(3):353–62.

    Google Scholar 

  22. Facciponte JG, Wang XY, Subjeck JR. Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. Eur J Immunol 2007;37(8):2268–79.

    Google Scholar 

  23. Gross C, Hansch D, Gastpar R, Multhoff G. Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 2003;384(2):267–79.

    Google Scholar 

  24. Kettner S, Kalthoff F, Graf P, et al. EWI-2/CD316 Is an Inducible Receptor of HSPA8 on Human Dendritic Cells. Mol Cell Biol 2007;27(21):7718–26.

    Google Scholar 

  25. Sondermann H, Becker T, Mayhew M, Wieland F, Hartl FU. Characterization of a receptor for heat shock protein 70 on macrophages and monocytes. Biol Chem 2000;381(12):1165–74.

    Google Scholar 

  26. Whittall T, Wang Y, Younson J, et al. Interaction between the CCR5 chemokine receptors and microbial HSP70. Eur J Immunol 2006;36(9):2304–14.

    Google Scholar 

  27. Gong J, Zhu B, Murshid A, et al. T Cell Activation by Heat Shock Protein 70 Vaccine Requires TLR Signaling and Scavenger Receptor Expressed by Endothelial Cells-1. J Immunol 2009.

    Google Scholar 

  28. Theriault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK. Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/­epithelial cells. FEBS Lett 2005;579(9):1951–60.

    Google Scholar 

  29. Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz SM. Toll-like receptor (TLR) ­signaling in response to Aspergillus fumigatus. J Biol Chem 2002;277(42):39320–6.

    Google Scholar 

  30. Peng P, Menoret A, Srivastava PK. Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. J Immunol Methods 1997;204(1):13–21.

    Google Scholar 

  31. Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 2006;69(1):36–45.

    Google Scholar 

  32. Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol Ther 2002;95(1):89–100.

    Google Scholar 

  33. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. Febs J 2005;272(24):6179–217.

    Google Scholar 

  34. Drickamer K. C-type lectin-like domains. Curr Opin Struct Biol 1999;9(5):585–90.

    Google Scholar 

  35. Adachi H, Tsujimoto M. Endothelial scavenger receptors. Prog Lipid Res 2006;45(5):379–404.

    Google Scholar 

  36. Rigotti A. Scavenger receptors and atherosclerosis. Biol Res 2000;33(2):97–103.

    Google Scholar 

  37. van Berkel TJ, Out R, Hoekstra M, Kuiper J, Biessen E, van Eck M. Scavenger receptors: friend or foe in atherosclerosis? Curr Opin Lipidol 2005;16(5):525–35.

    Google Scholar 

  38. Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 1997;8(5):275–80.

    Google Scholar 

  39. Theriault JR, Adachi H, Calderwood SK. Role of scavenger receptors in the binding and internalization of heat shock protein 70. J Immunol 2006;177(12):8604–11.

    Google Scholar 

  40. Adachi H, Tsujimoto M. Characterization of the human gene encoding the scavenger receptor expressed by endothelial cell and its regulation by a novel transcription factor, endothelial zinc finger protein-2. J Biol Chem 2002;277(27):24014–21.

    Google Scholar 

  41. Politz O, Gratchev A, McCourt PA, et al. Stabilin-1 and −2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 2002;362(Pt 1):155–64.

    Google Scholar 

  42. Wang XY, Facciponte J, Chen X, Subjeck JR, Repasky EA. Scavenger receptor-A negatively regulates antitumor immunity. Cancer Res 2007;67(10):4996–5002.

    Google Scholar 

  43. Herz J, Strickland DK. LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 2001;108(6):779–84.

    Google Scholar 

  44. Newton CS, Loukinova E, Mikhailenko I, et al. Platelet-derived growth factor receptor-beta (PDGFR-beta) activation promotes its association with the low density lipoprotein receptor-related protein (LRP). Evidence for co-receptor function. J Biol Chem 2005;280(30):27872–8.

    Google Scholar 

  45. Obermoeller-McCormick LM, Li Y, Osaka H, FitzGerald DJ, Schwartz AL, Bu G. Dissection of receptor folding and ligand-binding pro‑­perty with functional minireceptors of LDL receptor-related protein. J Cell Sci 2001;114(Pt 5):899–908.

    Google Scholar 

  46. Walters JJ, Berwin B. Differential CD91 dependence for calreticulin and Pseudomonas exotoxin-A endocytosis. Traffic 2005;6(12):1173–82.

    Google Scholar 

  47. Kurotaki T, Tamura Y, Ueda G, et al. Efficient cross-presentation by heat shock protein 90-peptide complex-loaded dendritic cells via an endosomal pathway. J Immunol 2007;179(3):1803–13.

    Google Scholar 

  48. Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells. Nat Immunol 2005;6(6):593–9.

    Google Scholar 

  49. Becker T, Hartl FU, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 2002;158(7):1277–85.

    Google Scholar 

  50. Jeannin P, Bottazzi B, Sironi M, et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 2005;22(5):551–60.

    Google Scholar 

  51. Kottke T, Pulido J, Thompson J, et al. Antitumor Immunity Can Be Uncoupled from Autoimmunity following Heat Shock Protein 70-Mediated Inflammatory Killing of Normal Pancreas. Cancer Res 2009.

    Google Scholar 

  52. Sawamura T. LOX-1 unlocked. Structure 2005;13(6):834–5.

    Google Scholar 

  53. Ohki I, Ishigaki T, Oyama T, et al. Crystal structure of human lectin-like, oxidized low-density lipoprotein receptor 1 ligand binding domain and its ligand recognition mode to OxLDL. Structure 2005;13(6):905–17.

    Google Scholar 

  54. Pluddemann A, Neyen C, Gordon S. Macrophage scavenger receptors and host-derived ligands. Methods 2007;43(3):207–17.

    Google Scholar 

  55. Appella E, Weber IT, Blasi F. Structure and function of epidermal growth factor-like regions in proteins. FEBS Lett 1988;231(1):1–4.

    Google Scholar 

  56. Shibata M, Ishii J, Koizumi H, et al. Type F scavenger receptor SREC-I interacts with advillin, a member of the gelsolin/villin family, and induces neurite-like outgrowth. J Biol Chem 2004;279(38):40084–90.

    Google Scholar 

  57. Park SY, Kim SY, Jung MY, Bae DJ, Kim IS. Epidermal growth factor-like domain repeat of stabilin-2 recognizes phosphatidylserine during cell corpse clearance. Mol Cell Biol 2008;28(17):5288–98.

    Google Scholar 

  58. Enomoto Y, Bharti A, Khaleque AA, et al. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J Immunol 2006;177(9):5946–55.

    Google Scholar 

  59. Apostolopoulos V, Yu M, Corper AL, et al. Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design. J Mol Biol 2002;318(5):1293–305.

    Google Scholar 

Download references

Acknowledgments

This work was supported by NIH research grants RO-1CA047407, R-O1CA119045, and RO-1CA094397.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart K. Calderwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Murshid, A., Theriault, J., Gong, J., Calderwood, S.K. (2011). Investigating Receptors for Extracellular Heat Shock Proteins. In: Calderwood, S., Prince, T. (eds) Molecular Chaperones. Methods in Molecular Biology, vol 787. Humana Press. https://doi.org/10.1007/978-1-61779-295-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-295-3_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-294-6

  • Online ISBN: 978-1-61779-295-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics