Skip to main content

Combined Lentiviral and RNAi Technologies for the Delivery and Permanent Silencing of the hsp25 Gene

  • Protocol
  • First Online:
Molecular Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 787))

Abstract

Elevated heat shock protein 27 (Hsp27) expression has been found in a number of tumors, including breast, prostate, gastric, uterine, ovarian, head and neck, and tumor arising from the nervous system and urinary system, and determined to be a predictor of poor clinical outcome. Although the mechanism of action of Hsp27 has been well documented, there are currently no available inhibitors of Hsp27 in clinical trials. RNA interference (RNAi) has the potential to offer more specificity and flexibility than traditional drugs to silence gene expression. Not surprisingly, RNAi has become a major focus for biotechnology and pharmaceutical companies, which are now in the early stages of developing RNAi therapeutics, mostly based on short interfering RNA (siRNAs), to target viral infection, cancer, hypercholesterolemia, cardiovascular disease, macular degeneration, and neurodegenerative diseases. However, the critical issues associated with RNAi as a therapeutic are delivery, specificity, and stability of the RNAi reagents. To date, the delivery is currently considered the biggest hurdle, as the introduction of siRNAs systemically into body fluids can result in their degradation, off-target effects, and immune detection. In this chapter, we discuss a method of combined lentiviral and RNAi-based technology for the delivery and permanent silencing of the hsp25 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindquist, S. (1986) The heat-shock response Annu Rev Biochem 55, 1151–91.

    Google Scholar 

  2. Hightower, L. E. (1991) Heat shock, stress proteins, chaperones, and proteotoxicity Cell 66, 191–7.

    Article  PubMed  CAS  Google Scholar 

  3. Ciocca, D. R., Adams, D. J., Edwards, D. P., Bjercke, R. J., and McGuire, W. L. (1983) Distribution of an estrogen-induced protein with a molecular weight of 24,000 in normal and malignant human tissues and cells Cancer Res 43, 1204–10.

    PubMed  CAS  Google Scholar 

  4. Ciocca, D. R., Adams, D. J., Edwards, D. P., Bjercke, R. J., and McGuire, W. L. (1984) Estrogen-induced 24K protein in MCF-7 breast cancer cells is localized in granules Breast Cancer Res Treat 4, 261–8.

    Article  PubMed  CAS  Google Scholar 

  5. Ciocca, D. R., Asch, R. H., Adams, D. J., and McGuire, W. L. (1983) Evidence for modulation of a 24K protein in human endometrium during the menstrual cycle J Clin Endocrinol Metab 57, 496–9.

    Article  PubMed  CAS  Google Scholar 

  6. Adams, D. J., and McGuire, W. L. (1985) Quantitative enzyme-linked immunosorbent assay for the estrogen-regulated Mr 24,000 protein in human breast tumors: correlation with estrogen and progesterone receptors Cancer Res 45, 2445–9.

    PubMed  CAS  Google Scholar 

  7. Horne, G. M., Angus, B., Wright, C., Needham, G., Nicholson, S., Harris, A. L., Innes, B., and Horne, C. H. (1988) Relationships between oestrogen receptor, epidermal growth factor receptor, ER-D5, and P24 oestrogen regulated protein in human breast cancer J Pathol 155, 143–50.

    Article  PubMed  CAS  Google Scholar 

  8. Ciocca, D. R., Stati, A. O., and Amprino de Castro, M. M. (1990) Colocalization of ­estrogen and progesterone receptors with an estrogen-regulated heat shock protein in paraffin sections of human breast and endometrial cancer tissue Breast Cancer Res Treat 16, 243–51.

    Google Scholar 

  9. Ciocca, D. R., Puy, L. A., Edwards, D. P., Adams, D. J., and McGuire, W. L. (1985) The presence of an estrogen-regulated protein detected by monoclonal antibody in abnormal human endometrium J Clin Endocrinol Metab 60, 137–43.

    CAS  Google Scholar 

  10. Langdon, S. P., Rabiasz, G. J., Hirst, G. L., King, R. J., Hawkins, R. A., Smyth, J. F., and Miller, W. R. (1995) Expression of the heat shock protein HSP27 in human ovarian cancer Clin Cancer Res 1, 1603–9.

    PubMed  CAS  Google Scholar 

  11. Ciocca, D. R., Jorge, A. D., Jorge, O., Milutin, C., Hosokawa, R., Diaz Lestren, M., Muzzio, E., Schulkin, S., and Schirbu, R. (1991) Estrogen receptors, progesterone receptors and heat-shock 27-kD protein in liver biopsy specimens from patients with hepatitis B virus infection Hepatology 13, 838–44.

    Article  PubMed  CAS  Google Scholar 

  12. Malusecka, E., Zborek, A., Krzyzowska-Gruca, S., and Krawczyk, Z. (2001) Expression of heat shock proteins HSP70 and HSP27 in primary non-small cell lung carcinomas. An immunohistochemical study Anticancer Res 21, 1015–21.

    Google Scholar 

  13. Raymond, E., Faivre, S., and Armand, J. P. (2000) Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy Drugs 60 Suppl 1, 15–23; discussion 41–2.

    Google Scholar 

  14. Slamon, D. J., Leyland-Jones, B., Shak, S., Fuchs, H., Paton, V., Bajamonde, A., Fleming, T., Eiermann, W., Wolter, J., Pegram, M., Baselga, J., and Norton, L. (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2 N Engl J Med 344, 783–92.

    Google Scholar 

  15. Aslakson, C. J., and Miller, F. R. (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor Cancer Res 52, 1399–405.

    Google Scholar 

  16. Bausero, M. A., Bharti, A., Page, D. T., Perez, K. D., Eng, J. W., Ordonez, S. L., Asea, E. E., Jantschitsch, C., Kindas-Muegge, I., Ciocca, D., and Asea, A. (2006) Silencing the hsp25 gene eliminates migration capability of the highly metastatic murine 4T1 breast adenocarcinoma cell Tumour Biol 27, 17–26.

    Article  PubMed  CAS  Google Scholar 

  17. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells Nature 411, 494–8.

    Article  PubMed  CAS  Google Scholar 

  18. Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., and Mello, C. C. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans Nature 391, 806–11.

    Google Scholar 

  19. Caplen, N. J., Parrish, S., Imani, F., Fire, A., and Morgan, R. A. (2001) Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems Proc Natl Acad Sci USA 98, 9742–7.

    Google Scholar 

  20. Kuttenkeuler, D., and Boutros, M. (2004) Genome-wide RNAi as a route to gene function in Drosophila Brief Funct Genomic Proteomic 3, 168–76.

    Google Scholar 

  21. Croce, C. M. (2009) Causes and consequences of microRNA dysregulation in cancer Nat Rev Genet 10, 704–14.

    Google Scholar 

  22. Negrini, M., Nicoloso, M. S., and Calin, G. A. (2009) MicroRNAs and cancer--new paradigms in molecular oncology Curr Opin Cell Biol 21, 470–9.

    Article  PubMed  CAS  Google Scholar 

  23. Shah, P. P., Hutchinson, L. E., and Kakar, S. S. (2009) Emerging role of microRNAs in diagnosis and treatment of various diseases including ovarian cancer J Ovarian Res 2, 11.

    Google Scholar 

  24. Carpenter, A. E., and Sabatini, D. M. (2004) Systematic genome-wide screens of gene function Nat Rev Genet 5, 11–22.

    Google Scholar 

  25. Chi, J. T., Chang, H. Y., Wang, N. N., Chang, D. S., Dunphy, N., and Brown, P. O. (2003) Genomewide view of gene silencing by small interfering RNAs Proc Natl Acad Sci USA 100, 6343–6.

    Google Scholar 

  26. Shah, R. G., Ghodgaonkar, M. M., Affar el, B., and Shah, G. M. (2005) DNA vector-based RNAi approach for stable depletion of poly(ADP-ribose) polymerase-1 Biochem Biophys Res Commun 331, 167–74.

    Google Scholar 

  27. Zimmermann, T. S., Lee, A. C., Akinc, A., Bramlage, B., Bumcrot, D., Fedoruk, M. N., Harborth, J., Heyes, J. A., Jeffs, L. B., John, M., Judge, A. D., Lam, K., McClintock, K., Nechev, L. V., Palmer, L. R., Racie, T., Rohl, I., Seiffert, S., Shanmugam, S., Sood, V., Soutschek, J., Toudjarska, I., Wheat, A. J., Yaworski, E., Zedalis, W., Koteliansky, V., Manoharan, M., Vornlocher, H. P., and MacLachlan, I. (2006) RNAi-mediated gene silencing in non-human primates Nature 441, 111–4.

    Google Scholar 

  28. Wiznerowicz, M., and Trono, D. (2005) Harnessing HIV for therapy, basic research and biotechnology Trends Biotechnol 23, 42–7.

    Article  PubMed  CAS  Google Scholar 

  29. Zwierska, I., Walker, R. D., Choksy, S. A., Male, J. S., Pockley, A. G., and Saxton, J. M. (2006) Relative tolerance to upper- and lower-limb aerobic exercise in patients with peripheral arterial disease European Journal of Vascular and Endovascular Surgery 31, 157–63.

    Google Scholar 

  30. Wiznerowicz, M., and Trono, D. (2003) Conditional suppression of cellular genes: lentivirus vector-mediated drug-inducible RNA interference J Virol 77, 8957–61.

    Google Scholar 

  31. Rubinson, D. A., Dillon, C. P., Kwiatkowski, A. V., Sievers, C., Yang, L., Kopinja, J., Rooney, D. L., Ihrig, M. M., McManus, M. T., Gertler, F. B., Scott, M. L., and Van Parijs, L. (2003) A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference Nat Genet 33, 401–6.

    Article  PubMed  CAS  Google Scholar 

  32. Abbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W., and Aebischer, P. (2002) Lentiviral-mediated RNA interference Hum Gene Ther 13, 2197–201.

    Google Scholar 

  33. Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J., and Mittal, V. (2004) Inducible, reversible, and stable RNA interference in mammalian cells Proc Natl Acad Sci USA 101, 1927–32.

    Article  PubMed  CAS  Google Scholar 

  34. Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N., and Aebischer, P. (2002) alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease Proc Natl Acad Sci USA 99, 10813–8.

    Article  PubMed  CAS  Google Scholar 

  35. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M., and Trono, D. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 272, 263–7.

    Google Scholar 

  36. Lu, X., Yu, Q., Binder, G. K., Chen, Z., Slepushkina, T., Rossi, J., and Dropulic, B. (2004) Antisense-mediated inhibition of human immunodeficiency virus (HIV) replication by use of an HIV type 1-based vector results in severely attenuated mutants incapable of developing resistance J Virol 78, 7079–88.

    Article  PubMed  CAS  Google Scholar 

  37. Li, L., Lin, X., Staver, M., Shoemaker, A., Semizarov, D., Fesik, S. W., and Shen, Y. (2005) Evaluating hypoxia-inducible factor-1alpha as a cancer therapeutic target via inducible RNA interference in vivo Cancer Res 65, 7249–58.

    Article  PubMed  CAS  Google Scholar 

  38. Nagaraja, G. M., Kaur, P., Zheng, H., Bausero, M. A., Multhoff, G., and Asea, A. (2011) Silencing hsp25 gene expression augments proteasome activity and increases CD8+ T cell-mediated memory and tumor killing. Cancer Prevention Res (in press).

    Google Scholar 

  39. Amarzguioui, M., Rossi, J. J., and Kim, D. (2005) Approaches for chemically synthesized siRNA and vector-mediated RNAi FEBS Lett 579, 5974–81.

    Google Scholar 

  40. Judge, A., and MacLachlan, I. (2008) Overcoming the innate immune response to small interfering RNA Hum Gene Ther 19, 111–24.

    Google Scholar 

  41. Kehoe, J. W., and Kay, B. K. (2005) Filamentous phage display in the new millennium Chem Rev 105, 4056–72.

    Google Scholar 

  42. Monaci, P., Urbanelli, L., and Fontana, L. (2001) Phage as gene delivery vectors Curr Opin Mol Ther 3, 159–69.

    Google Scholar 

  43. van Nimwegen, M. J., and van de Water, B. (2007) Focal adhesion kinase: a potential target in cancer therapy Biochem Pharmacol 73, 597–609.

    Google Scholar 

  44. Lachmann, R. (2004) Herpes simplex virus-based vectors Int J Exp Pathol 85, 177–90.

    Google Scholar 

  45. Wade-Martins, R., Smith, E. R., Tyminski, E., Chiocca, E. A., and Saeki, Y. (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells Nat Biotechnol 19, 1067–70.

    Google Scholar 

  46. Pelkmans, L., Kartenbeck, J., and Helenius, A. (2001) Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER Nat Cell Biol 3, 473–83.

    Article  PubMed  CAS  Google Scholar 

  47. Mukherjee, S., Abd-El-Latif, M., Bronstein, M., Ben-nun-Shaul, O., Kler, S., and Oppenheim, A. (2007) High cooperativity of the SV40 major capsid protein VP1 in virus assembly PLoS One 2, e765.

    Article  PubMed  Google Scholar 

  48. Sikorski, R., and Peters, R. (1998) Gene therapy. Treating with HIV Science 282, 1438.

    Google Scholar 

  49. Amado, R. G., and Chen, I. S. (1999) Lentiviral vectors – the promise of gene therapy within reach? Science 285, 674–6.

    Article  PubMed  CAS  Google Scholar 

  50. Sinn, P. L., Sauter, S. L., and McCray, P. B., Jr. (2005) Gene therapy progress and prospects: development of improved lentiviral and retroviral vectors – design, biosafety, and production Gene Ther 12, 1089–98.

    Article  PubMed  CAS  Google Scholar 

  51. Larson, S. D., Jackson, L. N., Chen, L. A., Rychahou, P. G., and Evers, B. M. (2007) Effectiveness of siRNA uptake in target tissues by various delivery methods Surgery 142, 262–9.

    Google Scholar 

  52. Wolff, J. A., and Rozema, D. B. (2008) Breaking the bonds: non-viral vectors become chemically dynamic Mol Ther 16, 8–15.

    Google Scholar 

  53. Avnir, Y., Ulmansky, R., Wasserman, V., Even-Chen, S., Broyer, M., Barenholz, Y., and Naparstek, Y. (2008) Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: a novel approach to treating autoimmune arthritis Arthritis Rheum 58, 119–29.

    Google Scholar 

  54. Lu, J. J., Langer, R., and Chen, J. (2009) A novel mechanism is involved in cationic ­lipid-mediated functional siRNA delivery Mol Pharm 6, 763–71.

    Google Scholar 

  55. Akinc, A., Thomas, M., Klibanov, A. M., and Langer, R. (2005) Exploring polyethylenimine-mediated DNA transfection and the proton sponge hypothesis J Gene Med 7, 657–63.

    Google Scholar 

  56. Simoes, S., Moreira, J. N., Fonseca, C., Duzgunes, N., and de Lima, M. C. (2004) On the formulation of pH-sensitive liposomes with long circulation times Adv Drug Deliv Rev 56, 947–65.

    Google Scholar 

  57. Bradley, S. P., Rastellini, C., da Costa, M. A., Kowalik, T. F., Bloomenthal, A. B., Brown, M., Cicalese, L., Basadonna, G. P., and Uknis, M. E. (2005) Gene silencing in the endocrine pancreas mediated by short-interfering RNA Pancreas 31, 373–9.

    Google Scholar 

  58. Peer, D., Park, E. J., Morishita, Y., Carman, C. V., and Shimaoka, M. (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target Science 319, 627–30.

    Google Scholar 

  59. Yagi, N., Manabe, I., Tottori, T., Ishihara, A., Ogata, F., Kim, J. H., Nishimura, S., Fujiu, K., Oishi, Y., Itaka, K., Kato, Y., Yamauchi, M., and Nagai, R. (2009) A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo Cancer Res 69, 6531–8.

    Google Scholar 

  60. Bouxsein, N. F., McAllister, C. S., Ewert, K. K., Samuel, C. E., and Safinya, C. R. (2007) Structure and gene silencing activities of monovalent and pentavalent cationic lipid vectors complexed with siRNA Biochemistry 46, 4785–92.

    Google Scholar 

  61. Liu, Y., Liggitt, D., Zhong, W., Tu, G., Gaensler, K., and Debs, R. (1995) Cationic liposome-mediated intravenous gene delivery J Biol Chem 270, 24864–70.

    Google Scholar 

  62. Lee, R. J., and Huang, L. (1996) Folate-targeted, anionic liposome-entrapped polylysine-condensed DNA for tumor cell-specific gene transfer J Biol Chem 271, 8481–7.

    Article  PubMed  CAS  Google Scholar 

  63. Srinivas, G., Discher, D. E., and Klein, M. L. (2005) Key roles for chain flexibility in block copolymer membranes that contain pores or make tubes Nano Lett 5, 2343–9.

    Google Scholar 

  64. Woodrow, K. A., Cu, Y., Booth, C. J., Saucier-Sawyer, J. K., Wood, M. J., and Saltzman, W. M. (2009) Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA Nat Mater 8, 526–33.

    Google Scholar 

  65. Rozema, D. B., Lewis, D. L., Wakefield, D. H., Wong, S. C., Klein, J. J., Roesch, P. L., Bertin, S. L., Reppen, T. W., Chu, Q., Blokhin, A. V., Hags-trom, J. E., and Wolff, J. A. (2007) Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes Proc Natl Acad Sci USA 104, 12982–7.

    Google Scholar 

  66. Heidel, J. D., Yu, Z., Liu, J. Y., Rele, S. M., Liang, Y., Zeidan, R. K., Kornbrust, D. J., and Davis, M. E. (2007) Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA Proc Natl Acad Sci USA 104, 5715–21.

    Article  PubMed  CAS  Google Scholar 

  67. Pirollo, K. F., and Chang, E. H. (2008) Targeted delivery of small interfering RNA: approaching effective cancer therapies Cancer Res 68, 1247–50.

    Google Scholar 

  68. Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R. K., Racie, T., Rajeev, K. G., Rohl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., and Vornlocher, H. P. (2004) Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs Nature 432, 173–8.

    Google Scholar 

  69. Reischl, D., and Zimmer, A. (2009) Drug delivery of siRNA therapeutics: potentials and limits of nanosystems Nanomedicine 5, 8–20.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Research Advancement Awards from Scott & White Memorial Hospital and Clinic (G.M.N. and P.K.), Institutional support from Scott & White Memorial Hospital and Clinic, Texas A&M Health Science Center College of Medicine, the Central Texas Veterans Health Administration, an Endowment from the Cain Foundation, and the US National Institutes of Health grant RO1CA91889 (A.A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexzander Asea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kaur, P., Nagaraja, G.M., Asea, A. (2011). Combined Lentiviral and RNAi Technologies for the Delivery and Permanent Silencing of the hsp25 Gene. In: Calderwood, S., Prince, T. (eds) Molecular Chaperones. Methods in Molecular Biology, vol 787. Humana Press. https://doi.org/10.1007/978-1-61779-295-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-295-3_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-294-6

  • Online ISBN: 978-1-61779-295-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics