Skip to main content

Implicit Methods for Qualitative Modeling of Gene Regulatory Networks

  • Protocol
  • First Online:
Gene Regulatory Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 786))

Abstract

Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene–gene or gene–protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodwin BC. Temporal organization in cells; A dynamic theory of cellular control processes. Academic Press, New York, 1963.

    Google Scholar 

  2. Li S. A quantitative study of the division cycle of caulobacter crescentus stalked cells. PLoS Computational Biology, 4, 2008.

    Google Scholar 

  3. Chen KC. Integrative analysis of cell cycle control in budding yeast. Molecular Biology of Cell, 15:3841–3862, 2004.

    Article  CAS  Google Scholar 

  4. Semenov A and Yakovlev A. Verification of asynchronous circuits using time Petri net unfolding. Proceedings of the 33rd annual conference on Design automation, Las Vegas 1996, pages 59–62, 1996.

    Google Scholar 

  5. Yakovlev A, Semenov A, Koelmans AM, and Kinniment DJ. Petri nets and asynchronous circuit design. IEEE colloquium on Design and Test Asynchronous Systems, pages 8/1-8/6, 1996.

    Google Scholar 

  6. Remy E, Ruet P, Mendoza L, Thieffry D, and Chaouiya C. From logical regulatory graphs to standard petri nets: Dynamical roles and functionality of feedback circuits. Lecture Notes in Computer Science, 4230:56–72, 2006.

    Article  Google Scholar 

  7. Snoussi EH and Thomas R. Logical identification of all steady states: the concept of feedback loop-characteristic states. Bulletin of Mathematical Biology, 55:973–991, 1993.

    Google Scholar 

  8. Steggles LJ, Banks R, Shaw O, and Wipat A. Qualitatively modeling and analysing genetic regulatory networks: a petri net approach. Bioinformatics, 23(3):336–343, 2007.

    Article  PubMed  CAS  Google Scholar 

  9. Heiner M and Koch I. Petri net based model validation in systems biology. J. Cortadella and W. Reisig (Eds), ICATPN04, LNCS, 3099: 216–237, 2004.

    Google Scholar 

  10. Hofestadt R and Thelen S. Quantitative modeling of biochemical networks. In Silico Biology 1, pages 39–53, 1998.

    Google Scholar 

  11. Thomas R. Regulatory networks seen as ­asynchronous automata: a logical description. Journal of Theoetical. Biology, 153:1–23, 1991.

    Google Scholar 

  12. Reddy VN, Liebman MN, and Mavrovouniotis ML. Qualitative analysis of bio-chemical reaction systems. Computational Biology and Medical Informatics, 26:9–24, 1996.

    Article  CAS  Google Scholar 

  13. Kahlem P and Birney E. Dry work in a wet world: computation in systems biology. Molecular Systems Biology, 2:40, 2006.

    Article  PubMed  Google Scholar 

  14. Huang S, Eichler G, Bar-Yam Y, and Ingber DE. Cell fates as high dimensional attractor states of a complex gene regulatory network. Physics. Review Letters, 94:128701:1–128701:4, 2005.

    Google Scholar 

  15. Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoetical. Biology, 22:437–467, 1969.

    Google Scholar 

  16. Xie A and Beerel PA. Efficient state classification of finite state markov chains. Proceedings of Design Automation Conference, 1998.

    Google Scholar 

  17. De Micheli G. Synthesis and optimization of digital circuits. Mc Graw-Hill Higher Education, 2009.

    Google Scholar 

  18. Touati HJ, Savoj H, Lin B, Brayton RK, and Sangiovanni-Vincentelli Implicit state enumeration of finite-state machines using BDDs. Proceedings of ICCAD’90, 1990.

    Google Scholar 

  19. Roig O, Cortadella J, and Pastor E. Verification of asynchronous circuits by BDD-based model checking of Petri nets. Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 935:374–391, 1995.

    Google Scholar 

  20. Bryant RE. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, 35:677–691, 1986.

    Article  Google Scholar 

  21. Fauré A, Naldi A, Chaouiya C, and Thieffry D. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics, 22:e124-131, 2006.

    Article  PubMed  Google Scholar 

  22. Mendoza L and Xenarios I. A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theoretical Biology and Medical Modeling, Mar 16;3:13, 2006.

    Google Scholar 

  23. Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, and Gilles ED. A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics, 7, 2006.

    Google Scholar 

  24. Agnello D, Lankford CS, Bream J, Morinobu A, Gadina M, O’Shea JJ, and Frucht DM. Cytokines and transcription factors that regulate T helper cell differentiation: new players and new insights. Journal of Clinical Immunology, 23:147–162, 2003.

    Article  PubMed  CAS  Google Scholar 

  25. Murphy KM and Reiner SL. The lineage decisions on helper T cells. Nature Review Immunology, 2:933–944, 2002.

    Article  CAS  Google Scholar 

  26. Szabo SJ, Sullivan BM, Peng SL, and Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annual Reviews Immunology, 21:713–758, 2003.

    Article  CAS  Google Scholar 

  27. Yates A, Bergmann C, Van Hemmen JL, Stark J, and Callard R. Cytokine-modulated regulation of helper T cell populations. Journal of Theoretical Biology, 206:539–560, 2000.

    Article  PubMed  CAS  Google Scholar 

  28. Bergmann C, van Hemmen JL, and Segel LA. Th1 or Th2: how an appropriate T helper response can be made. Bulletin of Mathematical Biology, 63:405–430, 2001.

    Article  PubMed  CAS  Google Scholar 

  29. Weisbuch G, DeBoer RJ, and Perelson AS. Localized memories in idiotypic networks. Jour-nal of Theoretical Biology, 146:483–499, 1990.

    Article  PubMed  CAS  Google Scholar 

  30. Krueger GR, Marshall GR, Junker U, Schroeder H, and Buja LM. Growth factors, cytokines, chemokines and neuropeptides in the modeling of T-cells. In Vivo, 17:105–118, 2002.

    Google Scholar 

  31. Mendoza L. A network model for the control of the differentiation process in Th cells. Biosystems, 84:101–114, 2005.

    Article  PubMed  Google Scholar 

  32. Becskei A and Serrano L. Engineering stability in gene networks by autoregulation. Nature, 405:590–593, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. McAdams HH and Arkin A. Its a noisy business! Genetic regulation at the nanomolar scale. Trends in Genetics, 15:65–69, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Pedraza JM and Oudenaarden AV. Noise propagation in gene networks. Science, 307:1965–1969, 2005.

    Article  PubMed  CAS  Google Scholar 

  35. Kaern M, Elston TC, Blake WJ, and Collins JJ. Stochasticity in gene expression: From theories to phenotypes. Nature Reviews Genetics, 6: 451–464, 2005.

    Article  PubMed  CAS  Google Scholar 

  36. Losick R and Desplan C. Stochasticity and cell fate. Science, 320:65–68, 2008.

    Article  PubMed  CAS  Google Scholar 

  37. Garg A, Di Cara A, Mendoza L, Xenarios I and De Micheli G. Synchronous vs. Asynchronous modeling of gene regulatory networks. Bioinformatics, 24:1917–1925, 2008.

    Google Scholar 

  38. Rao CV, Wolf DM, and Arkin AP. Control, exploitation and tolerance of intracellular noise. Nature, 421:231–237, 2002.

    Article  Google Scholar 

  39. Gonze D and Goldbeter A. Circadian rhythms and molecular noise. Chaos, 16:026–110, 2006.

    Article  Google Scholar 

  40. Schultz D, Jacob EB, Onuchic JN, and Wolynes PG. Molecular level stochastic model for competence cycles in Bacillus subtilis. Proceedings of National Academy of Science of the USA, 104:17582–17587, 2007.

    Article  CAS  Google Scholar 

  41. Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22:403–434, 1976.

    Article  CAS  Google Scholar 

  42. Gillespie DT. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81:2340–2361, 1977.

    Article  CAS  Google Scholar 

  43. Ribeiro AS and Kauffman SA. Noisy attractors and ergodic sets in models of gene regulatory networks. Journal of Theoretical Biology, 247:743–755, 2007.

    Article  PubMed  Google Scholar 

  44. Alvarez-Buylla ER, Chaos A, Aldana M, Bentez M, Cortes-Poza Y, Espinosa-Soto C, Hartasnchez DA, Lotto RB, Malkin D, Escalera Santos GJ, and Padilla-Longoria P. Floral Morphogenesis: Stochastic explorations of a gene network epigenetic landscape. PLoS ONE, 3:e3626, 2008.

    Google Scholar 

  45. Willadsena K and Wiles J. Robustness and state-space structure of Boolean gene regulatory models. Journal of Theoretical Biology, 249:749–765, 2007.

    Article  Google Scholar 

  46. Davidich MI and Bornholdt S. Boolean ­network model predicts cell cycle sequence of fission yeast. PLoS ONE, 3:e1672, 2008.

    Article  PubMed  Google Scholar 

  47. Garg A, Mohanram K, Di Cara A, De Micheli G and Xenarios I. Modeling stochasticity and robustness in gene regulatory networks. Bioinformatics, 25:i101-i109, 2009.

    Article  PubMed  CAS  Google Scholar 

  48. Kadanoff L, Coppersmith S, and Aldana M. Boolean dynamics with random couplings. Springer Applied Mathematical Sciences Series, Special volume:23–89, 2003.

    Google Scholar 

  49. Somenzi F. CUDD: CU Decision Diagram Package Release 2.4.1. University of Colorado at Boulder, 2005.

    Google Scholar 

  50. GenYsis toolbox. http://lsi.epfl.ch/down­loads.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Xenarios .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Garg, A., Mohanram, K., De Micheli, G., Xenarios, I. (2012). Implicit Methods for Qualitative Modeling of Gene Regulatory Networks. In: Deplancke, B., Gheldof, N. (eds) Gene Regulatory Networks. Methods in Molecular Biology, vol 786. Humana Press. https://doi.org/10.1007/978-1-61779-292-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-292-2_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-291-5

  • Online ISBN: 978-1-61779-292-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics