Analysis of Gene Expression as Relevant to Cancer Cells and Circulating Tumour Cells

  • Anne M. FrielEmail author
  • John Crown
  • Lorraine O’Driscoll
Part of the Methods in Molecular Biology book series (MIMB, volume 784)


Current literature provides significant evidence to support the concept that there are limited subpopulations of cells within a solid tumour that have increased tumour-initiating potential relative to the total tumour population. Such tumour-initiating cells have been identified in leukaemia and in a variety of solid tumours using different combinations of cell surface markers, suggesting that a tumour-initiating cell heterogeneity exists for each specific tumour. These studies have been extended to endometrial cancer; and herein we present several experimental approaches, both in vitro and in vivo, that can be used to determine whether such populations exist, and if so, to characterize them. These methods are adaptable to the investigation of tumour-initiating cells from other tumour types.

Key words

Endometrial cancer Tumour-initiating cell Cancer stem cell Surface markers Xenograft model Bone marrow Peripheral blood mononuclear cells Circulating tumour cells 



Preparation of this chapter was financed by the Science Foundation Ireland Strategic Research Cluster, Molecular Therapeutics for Cancer, Ireland (08/SRC/B1410: L. O’D. and J.C.). The authors thank Dr. Bo Rueda and staff at the Vincent Center for Reproductive Biology, Massachusetts General Hospital, Boston, USA, where this work was undertaken.


  1. 1.
    Dalerba, P., Cho, R. W., and Clarke, M. F. (2007) Cancer stem cells: models and concepts, Annu Rev Med 58, 267–284.PubMedCrossRefGoogle Scholar
  2. 2.
    Kelly, P. N., Dakic, A., Adams, J. M., Nutt, S. L., and Strasser, A. (2007) Tumor growth need not be driven by rare cancer stem cells, Science 317, 337.PubMedCrossRefGoogle Scholar
  3. 3.
    Friel, A. M., Sergent, P. A., Patnaude, C., Szotek, P. P., Oliva, E., Scadden, D. T., Seiden, M. V., Foster, R., and Rueda, B. R. (2008) Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells, Cell Cycle 7, 242–249.PubMedCrossRefGoogle Scholar
  4. 4.
    Haraguchi, N., Utsunomiya, T., Inoue, H., Tanaka, F., Mimori, K., Barnard, G. F., and Mori, M. (2006) Characterization of a side population of cancer cells from human gastrointestinal system, Stem Cells 24, 506–513.PubMedCrossRefGoogle Scholar
  5. 5.
    Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., and Tang, D. G. (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2− cancer cells are similarly tumorigenic, Cancer Res 65, 6207–6219.PubMedCrossRefGoogle Scholar
  6. 6.
    Szotek, P. P., Pieretti-Vanmarcke, R., Masiakos, P. T., Dinulescu, D. M., Connolly, D., Foster, R., Dombkowski, D., Preffer, F., Maclaughlin, D. T., and Donahoe, P. K. (2006) Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness, Proc Natl Acad Sci U S A 103, 11154–11159.PubMedCrossRefGoogle Scholar
  7. 7.
    Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells, Proc Natl Acad Sci U S A 100, 3983–3988.PubMedCrossRefGoogle Scholar
  8. 8.
    Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004) Identification of human brain tumour initiating cells, Nature 432, 396–401.PubMedCrossRefGoogle Scholar
  9. 9.
    Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., and De Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells, Nature 445, 111–115.PubMedCrossRefGoogle Scholar
  10. 10.
    Zhang, S., Balch, C., Chan, M. W., Lai, H. C., Matei, D., Schilder, J. M., Yan, P. S., Huang, T. H., and Nephew, K. P. (2008) Identification and characterization of ovarian cancer-initiating cells from primary human tumors, Cancer Res 68, 4311–4320.PubMedCrossRefGoogle Scholar
  11. 11.
    Baba, T., Convery, P. A., Matsumura, N., Whitaker, R. S., Kondoh, E., Perry, T., Huang, Z., Bentley, R. C., Mori, S., Fujii, S., Marks, J. R., Berchuck, A., and Murphy, S. K. (2009) Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells, Oncogene 28, 209–218.PubMedCrossRefGoogle Scholar
  12. 12.
    Curley, M. D., Therrien, V. A., Cummings, C. L., Sergent, P. A., Koulouris, C. R., Friel, A. M., Roberts, D. J., Seiden, M. V., Scadden, D. T., Rueda, B. R., and Foster, R. (2009) CD133 Expression Defines a Tumor Initiating Cell Population in Primary Human Ovarian Cancer, Stem Cells 27(12), 2875–2883.Google Scholar
  13. 13.
    Rutella, S., Bonanno, G., Procoli, A., Mariotti, A., Corallo, M., Prisco, M. G., Eramo, A., Napoletano, C., Gallo, D., Perillo, A., Nuti, M., Pierelli, L., Testa, U., Scambia, G., and Ferrandina, G. (2009) Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors, Clin Cancer Res 15, 4299–4311.PubMedCrossRefGoogle Scholar
  14. 14.
    Hubbard, S. A., Friel, A. M., Kumar, B., Zhang, L., Rueda, B. R., and Gargett, C. E. (2009) Evidence for cancer stem cells in human endometrial carcinoma, Cancer Res 69, 8241–8248.PubMedCrossRefGoogle Scholar
  15. 15.
    Bansal, N., Yendluri, V., and Wenham, R. M. (2009) The molecular biology of endometrial cancers and the implications for pathogenesis, classification, and targeted therapies, Cancer Control 16, 8–13.PubMedGoogle Scholar
  16. 16.
    Eliane, J. P., Repollet, M., Luker, K. E., Brown, M., Rae, J. M., Dontu, G., Schott, A. F., Wicha, M., Doyle, G. V., Hayes, D. F., and Luker, G. D. (2008) Monitoring serial changes in circulating human breast cancer cells in murine xenograft models, Cancer Res 68, 5529–5532.PubMedCrossRefGoogle Scholar
  17. 17.
    Rago, C., Huso, D. L., Diehl, F., Karim, B., Liu, G., Papadopoulos, N., Samuels, Y., Velculescu, V. E., Vogelstein, B., Kinzler, K. W., and Diaz, L. A., Jr. (2007) Serial assessment of human tumor burdens in mice by the analysis of circulating DNA, Cancer Res 67, 9364–9370.PubMedCrossRefGoogle Scholar
  18. 18.
    Yin, A. H., Miraglia, S., Zanjani, E. D., Almeida-Porada, G., Ogawa, M., Leary, A. G., Olweus, J., Kearney, J., and Buck, D. W. (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells, Blood 90, 5002–5012.PubMedGoogle Scholar
  19. 19.
    Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., Bray, R. A., Waller, E. K., and Buck, D. W. (1997) A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning, Blood 90, 5013–5021.PubMedGoogle Scholar
  20. 20.
    Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., and Maitland, N. J. (2005) Prospective identification of tumorigenic prostate cancer stem cells, Cancer Res 65, 10946–10951.PubMedCrossRefGoogle Scholar
  21. 21.
    Lane, S. W., Scadden, D. T., and Gilliland, D. G. (2009) The leukemic stem cell niche: current concepts and therapeutic opportunities, Blood 114, 1150–1157.PubMedCrossRefGoogle Scholar
  22. 22.
    Iwasaki, H., and Suda, T. (2009) Cancer stem cells and their niche, Cancer Sci 100, 1166–1172.PubMedCrossRefGoogle Scholar
  23. 23.
    Meads, M. B., Hazlehurst, L. A., and Dalton, W. S. (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance, Clin Cancer Res 14, 2519–2526.PubMedCrossRefGoogle Scholar
  24. 24.
    Adams, G. B., Chabner, K. T., Alley, I. R., Olson, D. P., Szczepiorkowski, Z. M., Poznansky, M. C., Kos, C. H., Pollak, M. R., Brown, E. M., and Scadden, D. T. (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor, Nature 439, 599–603.PubMedCrossRefGoogle Scholar
  25. 25.
    Mayack, S. R., and Wagers, A. J. (2008) Osteolineage niche cells initiate hematopoietic stem cell mobilization, Blood 112, 519–531.PubMedCrossRefGoogle Scholar
  26. 26.
    Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W. G., Ross, J., Haug, J., Johnson, T., Feng, J. Q., Harris, S., Wiedemann, L. M., Mishina, Y., and Li, L. (2003) Identification of the haematopoietic stem cell niche and control of the niche size, Nature 425, 836–841.PubMedCrossRefGoogle Scholar
  27. 27.
    Kiel, M. J., Yilmaz, O. H., Iwashita, T., Terhorst, C., and Morrison, S. J. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells, Cell 121, 1109–1121.PubMedCrossRefGoogle Scholar
  28. 28.
    Kiel, M. J., and Morrison, S. J. (2008) Uncertainty in the niches that maintain haematopoietic stem cells, Nat Rev Immunol 8, 290–301.PubMedCrossRefGoogle Scholar
  29. 29.
    Ninomiya, M., Abe, A., Katsumi, A., Xu, J., Ito, M., Arai, F., Suda, T., Kiyoi, H., Kinoshita, T., and Naoe, T. (2007) Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice, Leukemia 21, 136–142.PubMedCrossRefGoogle Scholar
  30. 30.
    Cristofanilli, M., Hayes, D. F., Budd, G. T., Ellis, M. J., Stopeck, A., Reuben, J. M., Doyle, G. V., Matera, J., Allard, W. J., Miller, M. C., Fritsche, H. A., Hortobagyi, G. N., and Terstappen, L. W. (2005) Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer, J Clin Oncol 23, 1420–1430.PubMedCrossRefGoogle Scholar
  31. 31.
    Smerage, J. B., and Hayes, D. F. (2008) The prognostic implications of circulating tumor cells in patients with breast cancer, Cancer Invest 26, 109–114.PubMedCrossRefGoogle Scholar
  32. 32.
    Braun, S., Pantel, K., Muller, P., Janni, W., Hepp, F., Kentenich, C. R., Gastroph, S., Wischnik, A., Dimpfl, T., Kindermann, G., Riethmuller, G., and Schlimok, G. (2000) Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer, N Engl J Med 342, 525–533.Google Scholar
  33. 33.
    Gebauer, G., Fehm, T., Merkle, E., Beck, E. P., Lang, N., and Jager, W. (2001) Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up, J Clin Oncol 19, 3669–3674.PubMedGoogle Scholar
  34. 34.
    Lin, E. H., Hassan, M., Li, Y., Zhao, H., Nooka, A., Sorenson, E., Xie, K., Champlin, R., Wu, X., and Li, D. (2007) Elevated circulating endothelial progenitor marker CD133 messenger RNA levels predict colon cancer recurrence, Cancer 110, 534–542.PubMedCrossRefGoogle Scholar
  35. 35.
    Mehra, N., Penning, M., Maas, J., Beerepoot, L. V., van Daal, N., van Gils, C. H., Giles, R. H., and Voest, E. E. (2006) Progenitor marker CD133 mRNA is elevated in peripheral blood of cancer patients with bone metastases, Clin Cancer Res 12, 4859–4866.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anne M. Friel
    • 1
    Email author
  • John Crown
    • 2
  • Lorraine O’Driscoll
    • 3
  1. 1.School of Pharmacy and Pharmaceutical Sciences & MTCITrinity College DublinDublinIreland
  2. 2.Molecular Therapeutics for Cancer Ireland (MTCI)Dublin City UniversityDublinIreland
  3. 3.School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland

Personalised recommendations