Skip to main content

Impact of Substrates for Probe Immobilization

  • Protocol
  • First Online:
Protein Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 785))

Abstract

Protein chips are becoming a key technology in proteomic research and medical diagnostics. Surface chemistry for immobilization of proteins forms the basis for assay design and determines the properties of protein microarrays. Optimal substrates provide a homogeneous environment for probes, preventing loss of biological activity and unspecific adsorption. Numerous immobilization approaches, based on covalent binding, affinity, or adsorption, have been proposed thus far, and these represent the toolbox for choosing optimized strategies for each individual application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danczyk, R., Krieder, B., North, A., Webster, T., HogenEsch H., Rundell, A. (2003) Comparison of Antibody Functionality Using different Immobilization Methods. Biotechnology and Bioengineerin. 84, 216–223.

    Google Scholar 

  2. Blawas, A. S., Reichert, W. M. (1998) Protein Patterning. Biomaterials 19, 595–609.

    Google Scholar 

  3. Angenendt, P., Glökler, J., Murphy, D., Lehrach, H., Cahill, D. J. (2002) Towards optimized antibody microarrays: a comparison of current microarray support materials. Analytical Biochemistry 309, 253–266.

    Google Scholar 

  4. Guilleaume, B., Buneß, A., Schmidt, C., Klimek, F., Moldenhauer, G., Huber, W., Arlt, D., Korf, U., Wiemann, S., Pouska, A. (2005) Systematic comparison of surface coatings for protein microarrays. Proteomics 5, 4705–4712.

    Google Scholar 

  5. Seurynck-Servoss, S. L., White, A. M., Baird, C. L., Rodland, K. D., Zangar, R. C. (2007) Evaluation of surface chemistries for antibody microarrays. Analytical Biochemistry 371, 105–115.

    Google Scholar 

  6. Rusmini, F., Zhong, Z., Feijen, J. (2007) Protein Immobilization Strategies for Protein Biochips. Biomacromolecules 8, 1775–1789.

    Google Scholar 

  7. Angenendt, P., Gloekler, J., Sobek, J., Lehrach, H., Cahill, D. J. (2003) Next generation of protein microarray support materials: evaluation for protein and microarray applications. J. Chromatography A 1009, 97–104.

    Google Scholar 

  8. Schaeferling, M., Schiller, S., Paul, H., Kruschina, M., Pavlickova, P., Meerkamp, M., Giammasi, C., Kambhampati, D. (2002) Appplication of self-assembly techniques in the design of biocompatible protein microarray surfaces. Electrophoresis 23, 3097–3105.

    Google Scholar 

  9. Kusnezow, W., Hoheisel, J. D. (2003) Solid supports for microarray immunoassays. J Mol Recognit 16, 165–176.

    Google Scholar 

  10. Jung, Y., Jeong, J. Y., Chung, B. H. (2008) Recent advances in immobilization methods of antibodies on solid supports. The Analyst 133, 697–701.

    Google Scholar 

  11. Butler, J. E., Spradling, J. E., Suter, M., Dierks, S. E., Heyermann, H., Petermann, J. H. (1986) The Immunochemistry of Sandwich ELISAs – I. The Binding Characteristics of Immunogl-obulins to Monoclonal and Polyclonal Capture Antibodies Adsorbed on Plastic and Their Detection by Symmetrical and Assymetrical Antibody-Enzyme Conjugates. Mollecular Immunology 23, 971–982.

    Google Scholar 

  12. Domnanich, P., Sauer, U., Pultar, J., Preininger, C. (2009) Protein microarray for the analysis of human melanoma biomarkers. Sensors and Actuators B 139, 2–8.

    Google Scholar 

  13. Kusnezow, W., Syagailo, Y. V., Goychuk I., Hoheisel, J. D., Wild, D. G. (2006) Antibody microarrays: the crucial impact of mass transport on assay kinetics and sensitivity. Expert Rev. Mol. Diagn. 6, 111–124.

    Google Scholar 

  14. Vijayendran, R. A., Leckband, D. E. (2001) A Quantitative Assessment of Heterogeneity for Surface-Immobilized Proteins. Anal. Chem. 73, 471–480.

    Google Scholar 

  15. Sauer, U., Preininger, C., Hany-Schmatzberger, R. (2005) Quick and simple: quality control of microarray data. Bioinformatics 21, 1572–1578.

    Google Scholar 

  16. Culf, A. S., Cuperlovic-Culf, M., Ouellette, R. J. (2006) Carbohydrate microarrays:survey of facbrication techniques. OMICS 10, 289–310.

    Google Scholar 

  17. Zhu, H., Klemic, J. F., Chnag, S., Bertone, P., Casamyor, A., Klemic, K. G., Smith, D., Gerstein, M., Reed, M. A., Snyder, M. (2000) Analysis of yeast protein kinases using protein chips. Nature Genetics 26, 283–289.

    Google Scholar 

  18. Bilitewski, U. (2006) Protein-sensing assay formats and devices. Analytica Chimica Acta 568, 232–247.

    Google Scholar 

  19. Butler, J.E., Ni, L., Nessler, R., Joshi, K.S., Suter, M., Rosenberg, B., Chang, J., Brown, W. R., Cantarero, L.A. (1992) The physical and functional behavior of capture antibodies adsorbed on polystyrene. Journal of Immunological Methods 150, 77–90.

    Google Scholar 

  20. Urabowska, T., Mangialaio, S., Hartmann, C., Legay, F. (2003) Development of protein microarray technology to monitor biomarkers of rheumatoid arthritis disease. Cell Biol Toxicol 19, 189–202.

    Google Scholar 

  21. Stillman, B. A., Tonkinson, J. L. (2000) FAST slides: a novel surface for microarrays. BioTechniques 29, 630–635.

    Google Scholar 

  22. Yin, L. T., Hu, C. Y., Chang, C. H. (2008) A single layer nitrocellulose for fabricating protein chips. Sens. Actuat. B 130, 374–378.

    Google Scholar 

  23. Reck, M., Stahl, F., Walter, J. G., Hollas, M., Melzner, D., Scheper, T. (2007) Optimization of a Microarray Sandwich-ELISA against hINF-y on a Modified Nitrocellulose Membrane. Biotechnol. Prog. 23, 1498–1505.

    Google Scholar 

  24. Afanassiev, V., Hanemann, V., Wölfl, S. (2000) Preparation of DNA and protein micro arrays on glass slides coated with an agarose film. Nucleic Acids Research 28, 12, e66.

    Google Scholar 

  25. Lv, L-L., Liu, B-C., Zhang C-X., Tang Z-M., Zhang L., Lu, Z-H.(2007) Construction of an antibody microarray based on agarose-coated slides. Electrophoresis 28, 406–413.

    Google Scholar 

  26. Rubina, A. Yu., Dyukova, V. I., Dementieva E. I., Stomakhin A. A., Nesmeyanov V. A. Grishin, E. V., Zasedatelev A. S. (2005) Quantitavie immunoassay of biotoxins on hydrogel-based protein microchips. Anal Biochem 340, 317–329.

    Google Scholar 

  27. Derwinska, K., Gheber, L. A., Sauer, U., Schron, L., Preininger, C. (2007) Effect of Surface Parameters on the Performance of IgG-Arrayed Hydrogel Chips: A Comprehensive Study. Langmuir 23, 10551–10558.

    Google Scholar 

  28. Derwinska, K., Sauer, U., Preininger, C. (2008) Adsorption versus covalent, statistically oriented and covalent, site-specific IgG immobilization on poly(vinyl alcohol)-based surfaces. Talanta 77, 652–658.

    Google Scholar 

  29. Zhou, Y., Andersson, O., Lindberg, P., Liedberg, B. (2004) Protein Microarrays on Carboxymethylated Dextran Hydrogels. Microchimica Acta, 147, 21–30.

    Google Scholar 

  30. Akkoyun, A., Bilitewski, U. (2002) Optimisation of glass surfaces for optical immmunosensors. Biosensors and Bioelectronics 17, 655–664.

    Google Scholar 

  31. Yadavalli, V. K., Koh, W.-G., Lazur, G.L., Pishko, M. V. (2004) Microfabricated protein-containing poly(ethylene) glycol hydrogel arrays for biosensing. Sensors & Actuators B 97, 290–297.

    Google Scholar 

  32. Moorthy, J., Burgess, R., Yethirai, A., Beebe, D. (2007) Microfluidic Based Platform for characterization of Protein Interactions in Hydorgel Nanoenvironments. Anal. Chem. 79, 5322–5327.

    Google Scholar 

  33. Dominguez, M. M., Wathier, M., Grinstaff, S. E., Schaus, S. E. (2007) Immobilized Hydrogels for Screening of Molecular Interactions. Anal. Chem. 79, 1064–1066.

    Google Scholar 

  34. Zubtsov, D. A., Ivanov, S. M., Rubina, A. Y., Dementieva E. I., et al. (2006) Effect of mixing on reaction-diffusion kinetics for protein hydrogel based microchips. J. Biotechnol. 122, 16–27.

    Google Scholar 

  35. Preininger, C., Sauer, U., Kern, W., Dayteg, J. (2004) Photoactivatable Copolymers of Vinybenzyl Thiocyanate as Immobilization Matrix for Biochips. Anal. Chem. 76, 6130–6136.

    Google Scholar 

  36. MacBeath, G., Schrieber, S. L. (2000) Printing Proteins as Microarrays for High-Throughput Function Determination. Science 289, 1760–1763.

    Google Scholar 

  37. Lu, B., Smyth, M. R., O’Kennedy, R. (1996) Oriented Immobilization of Antibodies and Its Applications in Immunoassays and Immunosensors. The Analyst 121, 29R–32R.

    Google Scholar 

  38. Seong, S.-Y. (2002) Microimmunoassay Using a Protein Chip: Optimizing Conditions for Protein Immobilization. Clinical and Diagnostic Laboratory Immunology 9, 4, 927–930.

    Google Scholar 

  39. Olle, E. W., Messamore, J., Deogracias, M. P., McClintock, S. D., Anderson, T. D., Johnson, K., J. (2005) Comparison of antibody array substrates and the use of glycerol to normalize spot morphology. Experimental and Molecular Pathology 79, 206–209.

    Google Scholar 

  40. El Khoury, G., Laurenceau, E., Chevelot, Y., Mérieux, Y., Desbos, A., Fabien, N., Rigal, D., Souteyrand, E., Cloarec, J-P. (2010) Development of miniaturized immunoassay: Influence of surface chemistry and comparison with enzyme-linked immunosorbent assay and Western blot. Anal. Biochem. 400, 10–18.

    Google Scholar 

  41. Cao, T., Wang, A., Liang, X., Tang, H., Auner, G. W., Salley, S. O., Ng, K.Y.S. (2007) Investigation of Spacer Length Effect on Immobilized Escherichia coli Pili-Antibody Molecular Recognition by AFM. Biotechnology and Bioengineering 98, 1109–1121.

    Google Scholar 

  42. Pathak, S., Singh, A. K., McElhanon, J. R., Dentinger, P. M. (2004) Dendrimer-Activated Surfaces for High Density and High Activity Protein Chip Applications. Langmiur 20, 6075–6079.

    Google Scholar 

  43. Yam, C. M., Deluge, M., Tang, D., Kumar, A., Cai, C. (2006) Preparation, characterization, resistance to protein adsorption, and specific avidin-biotin binding of poly(amidoamine) dendrimers functionalized with oligo(ethylene glycol) on gold. J Colloid Interface Sci 196, 118–130.

    Google Scholar 

  44. Rowe, C. A., Scruggs, S. B., Feldstein, M. J., Golden, J. P., Ligler, F. S. (1999) An Array Immunosensor for Simultaneous Detection of Clinical Analytes. Anal. Chem. 71, 433–439.

    Google Scholar 

  45. Bathia, S. K., Shriver-Lake, L. C., Prior, K. J., Georger J.H., Calvert, J. M., Bredehorst, R., Ligler, F. S. (1989) Use of thiol-terminated silanes and heterobifunctional crosslinkers for immobilization of antibodies on silica surfaces. Anal. Biochem. 178, 403–413.

    Google Scholar 

  46. Cho, I-H., Paek, E-H., Lee, H., Kang, J. Y., Kim, T. S., Paek, S-H. (2007) Site-directed biotinylation of antibodies for controlled immobilization on solid surfaces. Analytical Biochemistry 365, 14–23.

    Google Scholar 

  47. Peluso, P., Wilson, D.S., Do, D., Tran, H., Venkatasubbaiah, M., Quincy, D., Heidecker, B., Poindexter, K., Tolani, N., Phelan, M., Witte, K., Jung, L. S., Wagner, P., Nock, S. (2003) Optimizing antibody immobilization strategies for the construction of protein microarrays. Anal. Biochem. 312, 113–124.

    Google Scholar 

  48. Khan, F., He, M., Taussig, M.J. (2006) Double-Hexahistidine Tag with High-Affinity Binding for Protein Immobilization, Purification, and Detection on Ni-Nitrilotriacetic Acid Surfaces. Anal. Chem. 78, 3072–3079.

    Google Scholar 

  49. Muir, B. W., Barden, M. B., Collett, S. P., Gorse A.-D., Monteiro, R., Yang, L., McDougall, N. A., Gould, S., Maeji, N. J. (2007) High-throughput optimization of surfaces for antibody immobilization using metal complexes. Anal. Biochem. 363, 97–107.

    Google Scholar 

  50. Boozer, C., Ladd, J., Chen, S., Yu, Q., Homola, J., Jiang, S. (2004) DNA Directed Protein Immoblization on Mixed ssDNA/Oligo(ethylene glycol) Self-Assembled Monolayers for Sensitive Biosensors. Anal. Chem. 76, 6967–6972.

    Google Scholar 

  51. Niemeyer C. M., Boldt, L., Ceyhan, B., Blohm, D. (1999) DNA-Directed Immobilization: Efficient, Reversible, and Site-Selective Surface Binding of Proteins by Means of Covalent DNA-Streptavidin Conjugates. Anal. Biochem. 268, 54–63.

    Google Scholar 

  52. Wacker, R., Schröder, H., Niemeyer, C. M. (2004) Performance of antibody microarrays fabricated by either DNA-directed immobilization, direct spotting, or streptavidin-biotin attachment: a comparative study. Anal. Biochem. 330, 281–287.

    Google Scholar 

  53. Shriver-Lake, L., Donner, B., Edelstein, R., Breslin, K., Bhatia, S. K., Ligler, F. S. (1997) Antibody immobilization using heterobifunctional crosslinkers. Biosensors & Bioelectronics 12, 1101–1106.

    Google Scholar 

  54. Kusnezow, W., Jacob, A., Walijew, A., Diehl, F., Hoheisel, J.D. (2003) Antibody microarrays: An evaluation of production parameters. Proteomics 3, 254–264.

    Google Scholar 

  55. Cretich, M., Di Carlo, G., Giudici, c., Pokoj, s., Lauer, I., Scheurerand, S., Chiari, M. (2009) Detection of allergen specific immunoglobulins by microarrays coupled to microfluidics. Proteomics 9, 2098–2107.

    Google Scholar 

  56. Nijdam, J. A., Cheng, M. M. C., Geho, D. H., Fedele, R., Herrmann, P., Killian, K., Espina, V., Petricoin III, E. F., Liotta, L. A., Ferrari, M. (2007) Physicochemically modified silicon as a substrate for protein microarrays. Biomaterials 28, 550–558.

    Google Scholar 

  57. Lee, Y., Lee, E. K., Cho Y. W., Matsui, T., Kang, I-C., Kim, T-S., Han M. H. (2003) ProteoChip: A highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein-protein interaction studies. Proteomics 3, 2289–2304.

    Google Scholar 

  58. Oh, S. W., Moon, J. D., Lim, H. J., Park, S. Y., Kim T., Park, J. B., Han, M. H., Snyder, M., Choi, E. Y. (2005) Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. The FASEB Journal 19, 1335–1337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Sauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sauer, U. (2011). Impact of Substrates for Probe Immobilization. In: Korf, U. (eds) Protein Microarrays. Methods in Molecular Biology, vol 785. Humana Press. https://doi.org/10.1007/978-1-61779-286-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-286-1_24

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-285-4

  • Online ISBN: 978-1-61779-286-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics