Skip to main content

Reverse Phase Protein Microarrays for Clinical Applications

  • Protocol
  • First Online:
Protein Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 785))

Abstract

Phosphorylated proteins represent one of the most important constituents of the proteome and are under intense analysis by the biotechnology and pharmaceutical industry because of their central role for cellular signal transduction. Indeed, alterations in cellular signaling and control mechanisms that modulate signal transduction, functionally underpin most human cancers today. Beyond their central role as the causative components of tumorigenesis, these proteins have become an important research focus for discovery of predictive and prognostic biomarkers. Consequently, these pathway constituents comprise a powerful biomarker subclass whereby the same analyte that provides prediction and/or prognosis is also the drug target itself: a theranostic marker. Reverse phase protein microarrays have been developed to generate a functional patient-specific circuit “map” of the cell signaling networks based directly on cellular analysis of a biopsy specimen. This patient-specific circuit diagram provides key information that identifies critical nodes within aberrantly activated signaling that may serve as drug targets for individualized or combinatorial therapy. The protein arrays provide a portrait of the activated signaling network by the quantitative analysis of the phosphorylated, or activated, state of cell signaling proteins. Based on the growing realization that each patient’s tumor is different at the molecular level, the ability to measure and profile the ongoing phosphoprotein biomarker repertoire provides a new opportunity to personalize therapy based on the patient-specific alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faivre S, Djelloul S, Raymond E. (2006) New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. 1: Semin Oncol. 33(4):407–20.

    Google Scholar 

  2. Huang PH, Mukasa A, Bonavia R, Flynn RA, Brewer ZE, Cavenee WK, et al. (2007) Quantitative analysis of EGFRvIII cellular ­signaling networks reveals a combinatorial therapeutic strategy for glioblastoma. Proc Natl Acad Sci USA. 31;104(31):12867–72.

    Google Scholar 

  3. Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 18;316(5827):1039–43.

    Google Scholar 

  4. Sawyers CL. (2008) The cancer biomarker problem. Nature. 3;452(7187):548.

    Google Scholar 

  5. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. (2008) An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 26;321(5897):1807–12.

    Google Scholar 

  6. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. Sep. 26;321(5897):1801–6.

    Google Scholar 

  7. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, et al. (2007) The genomic landscapes of human breast and colorectal cancers. Science. 16;318(5853):1108–13.

    Google Scholar 

  8. Liotta LA, Kohn EC, and Petricoin EF. (2001) Clinical proteomics: personalized molecular medicine. JAMA. 286(18):2211–4.

    Article  PubMed  CAS  Google Scholar 

  9. Petricoin EF 3rd, Bichsel VE, Calvert VS, Espina V, Winters M, Young L. et al. (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol. 23:3614–21.

    Article  PubMed  CAS  Google Scholar 

  10. Wulfkuhle JD, Edmiston KH, Liotta LA, Petricoin EF. (2006) Technology Insight: pharmacoproteomics for cancer-promises of patient-tailored medicine using protein microarrays. Nat Clin Pract Oncol. 3(5):256–68.

    Article  PubMed  CAS  Google Scholar 

  11. Anderson L, Seilhamer J.(1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18(3–4):533–7.

    Article  PubMed  CAS  Google Scholar 

  12. Gygi SP, Rochon Y, Franza BR, Aebersold R. (1999) Correlation between protein and mRNA abundance in yeast. Mol Cell Biol. 19(3): 1720–30.

    PubMed  CAS  Google Scholar 

  13. Irish JM, Hovland R, Krutzik PO, Perez OD, Bruserud Ø, Gjertsen BT, et al. (2004) Single cell profiling of potentiated phospho-protein networks in cancer cells. Cell. 23;118(2):217–28.

    Google Scholar 

  14. Irish JM, Anensen N, Hovland R, Skavland J, Børresen-Dale AL, Bruserud O, et al. (2007) Flt3 Y591 duplication and Bcl-2 overexpression are detected in acute myeloid leukemia cells with high levels of phosphorylated wild-type p53. Blood. 15;109(6):2589–96.

    Google Scholar 

  15. Stern DF. (2005) Phosphoproteomics for oncology discovery and treatment. Expert Opin Ther Targets. 9(4):851–60.

    Article  PubMed  CAS  Google Scholar 

  16. Moran MF, Tong J, Taylor P, Ewing RM. (2006) Emerging applications for phospho-­proteomics in cancer molecular therapeutics. 1: Biochim Biophys Acta. Dec 1766(2):230–41.

    Google Scholar 

  17. Hunter, T. (2000) Signaling-2000 and beyond. Cell 100, 113–127.

    Article  PubMed  CAS  Google Scholar 

  18. Figlin RA. (2008) Mechanisms of Disease: survival benefit of temsirolimus validates a role for mTOR in the management of advanced RCC. Nat Clin Pract Oncol. 5(10):601–9.

    Article  PubMed  CAS  Google Scholar 

  19. Jin Q, Esteva FJ. (2008) Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia. 13(4):485–98.

    Article  PubMed  Google Scholar 

  20. Guha U, Chaerkady R, Marimuthu A, Patterson AS, Kashyap MK, Harsha HC, et al. (2008) Comparisons of tyrosine phosphorylated proteins in cells expressing lung cancer-specific alleles of EGFR and KRAS. Proc Natl Acad Sci USA. 105(37):14112–7.

    Article  PubMed  CAS  Google Scholar 

  21. Cui Q, Ma Y, Jaramillo M, Bari H, Awan A, Yang S, et al. (2007) A map of human cancer signaling. Mol Syst Biol. 3:152.

    Article  PubMed  Google Scholar 

  22. Haura EB, Zheng Z, Song L, Cantor A, Bepler G. (2005) Activated epidermal growth factor receptor-Stat-3 signaling promotes tumor survival in vivo in non-small cell lung cancer. Clin Cancer Res. 11(23):8288–94.

    Article  PubMed  CAS  Google Scholar 

  23. Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. (2007) Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal. 19(10):2013–23.

    Article  PubMed  CAS  Google Scholar 

  24. Swanton C, Futreal A, Eisen T. (2006) Her2-targeted therapies in non-small cell lung cancer. Clin Cancer Res. 12(14 Pt 2):4377s–4383s.

    Article  PubMed  CAS  Google Scholar 

  25. Casalini P, Iorio MV, Galmozzi E, Ménard S. (2004) Role of HER receptors family in development and differentiation. J Cell Physiol. 200(3):343–50.

    Article  PubMed  CAS  Google Scholar 

  26. Wiley HS. (2003) Trafficking of the ErbB receptors and its influence on signaling. Exp Cell Res. 284(1):78–88.

    Article  PubMed  CAS  Google Scholar 

  27. Arteaga CL.(2002) Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist. 7 Suppl 4:31–9.

    Article  PubMed  CAS  Google Scholar 

  28. Smock RG, Gierasch LM. (2009) Sending signals dynamically. Science. 324(5924):198–203.

    Article  PubMed  CAS  Google Scholar 

  29. Ventura AC, Jackson TL, Merajver SD. (2009) On the role of cell signaling models in cancer research. Cancer Res. 69(2):400–2.

    Article  PubMed  CAS  Google Scholar 

  30. Araujo RP, Liotta LA, Petricoin EF. (2007) Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discov. 6(11):871–80.

    Article  PubMed  CAS  Google Scholar 

  31. Geho DH, Petricoin EF, Liotta LA, Araujo RP. (2005) Modeling of protein signaling networks in clinical proteomics. Cold Spring Harb Symp Quant Biol. 70:517–24.

    Article  PubMed  CAS  Google Scholar 

  32. Iadevaia S, Lu Y, Morales FC, Mills GB, Ram PT. (2010) Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res. Jul 19. [Epub ahead of print].

    Google Scholar 

  33. Araujo RP, Liotta LA. (2006) A control theoretic paradigm for cell signaling networks: a simple complexity for a sensitive robustness. Curr Opin Chem Biol. 10(1):81–7.

    Article  PubMed  CAS  Google Scholar 

  34. Araujo RP, Petricoin EF, Liotta LA. (2005) A mathematical model of combination therapy using the EGFR signaling network. Biosystems. 80(1):57–69.

    Article  PubMed  CAS  Google Scholar 

  35. Napoletani D, Sauer T, Struppa DC, Petricoin E, Liotta L. (2008) Augmented sparse reconstruction of protein signaling networks. J Theor Biol. 255(1):40–52.

    Article  PubMed  CAS  Google Scholar 

  36. Johnson SA, Hunter T. (2005) Kinomics: methods for deciphering the kinome. Nat Methods. 2(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  37. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 4(12):988–1004.

    Article  PubMed  CAS  Google Scholar 

  38. O’Reilly KE, Rojo F, She QB, Solit D, Mills GB, Smith D, et al. (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66(3):1500–8.

    Article  PubMed  Google Scholar 

  39. Grünwald V, Soltau J, Ivanyi P, Rentschler J, Reuter C, Drevs J. (2009) Molecular targeted therapies for solid tumors: management of side effects. Onkologie. 32(3):129–38.

    PubMed  Google Scholar 

  40. Huang Z, Brdlik C, Jin P, Shepard HM. (2009) A pan-HER approach for cancer therapy: background, current status and future development. Expert Opin Biol Ther. 9(1):97–110.

    Article  PubMed  CAS  Google Scholar 

  41. Ramos JW. (2008) The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 40(12):2707–19.

    Article  PubMed  CAS  Google Scholar 

  42. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, et al. (2007) Roles of the Raf/MEK/ERK ­pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 1773(8):1263–84.

    Article  PubMed  CAS  Google Scholar 

  43. Paweletz CP, Charboneau L, Roth MJ, Bichsel VE, Simone NL, Chen T, et al. (2001) Reverse phase proteomic microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene. 12;20(16):1981–9.

    Google Scholar 

  44. Pierobon M, Calvert V, Belluco C, Garaci E, Deng J, Lise M, et al. (2009) Multiplexed Cell Signaling Analysis of Metastatic and Nonmetastatic Colorectal Cancer Reveals COX2-EGFR Signaling Activation as a Potential Prognostic Pathway Biomarker. Clin Colorectal Cancer. 8(2):110–7.

    Article  CAS  Google Scholar 

  45. Gulmann C, Sheehan KM, Conroy RM, Wulfkuhle JD, Espina V, Mullarkey MJ, et al. (2009) Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer. J Pathol. 218(4):514–9.

    Article  PubMed  CAS  Google Scholar 

  46. Vanmeter AJ, Rodriguez AS, Bowman ED, Harris CC, Deng J, Calvert VS, et al. (2008) LCM and protein microarray analysis of human NSCLC: Differential EGFR phosphorylation events associated with mutated EGFR compared to wild type. Mol Cell Proteomics. 7(10):1902–24.

    Article  PubMed  CAS  Google Scholar 

  47. Wulfkuhle JD, Speer R, Pierobon M, Laird J, Espina V, Deng J, et al. (2008) Multiplexed Cell Signaling Analysis of Human Breast Cancer: Applications for Personalized Therapy. J of Prot Res. 7(4):1508–17.

    Article  CAS  Google Scholar 

  48. Sanchez-Carbayo M, Socci ND, Richstone L, Corton M, Behrendt N, Wulkfuhle J, et al. (2007) Genomic and Proteomic Profiles Reveal the Association of Gelsolin to TP53 Status and Bladder Cancer Progression. Am J Pathol. 171(5):1650–8.

    Article  PubMed  CAS  Google Scholar 

  49. Zhou, J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J, et al. (2007) Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. PNAS. 104(41):16158–63.

    Article  PubMed  CAS  Google Scholar 

  50. Sheehan KM, Gulmann, C, Eichler GS, Weinstein, J, Barrett HL, Kay EW, et al. (2007) Signal Pathway Profiling of Epithelial and Stromal Compartments of Colonic Carcinoma Reveal Epithelial-Mesenchymal Transition Oncogene. 27(3):323–31.

    Google Scholar 

  51. Rapkiewicz A, Espina V, Zujewski JA, Lebowitz PF, Filie A, Wulfkuhle J, et al. (2007) The needle in the haystack: Application of breast fine-needle aspirate samples to quantitative protein microarray technology. Cancer. 111(3):173–84.

    Article  PubMed  CAS  Google Scholar 

  52. Petricoin EF, Espina V, Araujo RP, Midura B, Yeung C, Wan X, et al. (2007) Phosphoprotein Signal Pathway Mapping: Akt/mTOR Pathway Activation Association with Childhood Rhabdomyosarcoma Survival. Cancer Research. 67(7):3431–4.

    Article  PubMed  CAS  Google Scholar 

  53. Calvert VS, Tang Y, Boveia V, Wulfkuhle J, Schutz-Geschwender Olive DM, et al. (2004) Development of Multiplexed Protein Profiling and Detection Using Near Infrared Detection of Reverse-Phase Protein Microarrays. Clinical Proteomics. 1(1):81–90.

    Article  CAS  Google Scholar 

  54. Sheehan KM, Calvert VS, Kay EW, Lu Y, Fishman D, Espina V, et al. (2005) Use of reverse-phase protein microarrays and reference standard development for molecular network analysis of metastatic ovarian carcinoma. Mol Cell Proteomics. 4, 346–55.

    Article  PubMed  CAS  Google Scholar 

  55. Emmert-Buck MR, Bonner RF, Smith PD, Chuaqui RF, Zhuang Z, Goldstein SR, et al. (1996) Laser capture microdissection. Science. 274(5289):998–1001.

    Article  PubMed  CAS  Google Scholar 

  56. Silvestri A, Colombatti A, Calvert VS, Deng J, Mammano E, Belluco C, et al. (2010) Protein pathway biomarker analysis of human cancer reveals requirement for upfront cellular-enrichment processing. Lab Invest. 90(5):787–96.

    Article  PubMed  CAS  Google Scholar 

  57. Avninder S, Ylaya K, Hewitt SM. (2008) Tissue microarray: a simple technology that has revolutionized research in pathology. J Postgrad Med. 54(2):158–62.

    Article  PubMed  CAS  Google Scholar 

  58. Haab BB. (2005) Antibody arrays in cancer research. Mol Cell Proteomics. 4(4):377–83.

    Article  PubMed  CAS  Google Scholar 

  59. Zha H, Raffeld M, Charboneau L, Pittaluga S, Kwak LW, Petricoin E 3rd, Liotta LA et al. (2004) Similarities of prosurvival signals in Bcl-2-positive and Bcl-2-negative follicular lymphomas identified by reverse phase protein microarray. Lab Invest. 84, 235–44.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel F. Petricoin III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pierobon, M., Belluco, C., Liotta, L.A., Petricoin, E.F. (2011). Reverse Phase Protein Microarrays for Clinical Applications. In: Korf, U. (eds) Protein Microarrays. Methods in Molecular Biology, vol 785. Humana Press. https://doi.org/10.1007/978-1-61779-286-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-286-1_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-285-4

  • Online ISBN: 978-1-61779-286-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics