Skip to main content

A Brief Introduction to Single-Molecule Fluorescence Methods

  • Protocol
  • First Online:
Single Molecule Analysis

Abstract

One of the more popular single-molecule approaches in biological science is single-molecule fluorescence microscopy, which is the subject of the following section of this volume. Fluorescence methods provide the sensitivity required to study biology on the single-molecule level, but they also allow access to useful measurable parameters on time and length scales relevant for the biomolecular world. Before several detailed experimental approaches are addressed, we first give a general overview of single-molecule fluorescence microscopy. We start with discussing the phenomenon of fluorescence in general and the history of single-molecule fluorescence microscopy. Next, we review fluorescent probes in more detail and the equipment required to visualize them on the single-molecule level. We end with a description of parameters measurable with such approaches, ranging from protein counting and tracking, to distance measurements with Förster Resonance Energy Transfer and orientation measurements with fluorescence polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stokes, G. G. (1852) On the Change of Refrangibility of Light, Philosophical Transactions of the Royal Society of London 142, 463–562.

    Google Scholar 

  2. Herschel, J. F. W. (1845) No. I. On a Case of Superficial Colour Presented by a Homogeneous Liquid Internally Colourless, Philosophical Transactions of the Royal Society of London 135, 143–145.

    Google Scholar 

  3. Herschel, J. F. W. (1845) No. II. On the Epipolic Dispersion of Light, Being a Supplement to a Paper Entitled, “On a Case of Superficial Colour Presented by a Homogeneous Liquid Internally Colourless”, Philosophical Transactions of the Royal Society of London 135, 147–153.

    Google Scholar 

  4. Brewster, D. (1846) On the decomposition and dispersion of light within solid and fluid bodies, Transitions of the Royal Society of Edinburgh 16, 11.

    Google Scholar 

  5. Lakowicz, J. R. (2006) Principles of Fluorescence Microscopy, 3 ed., Springer, New York.

    Google Scholar 

  6. Hirschfeld, T. (1976) Optical Microscopic Observation of Single Small Molecules, Journal of the Optical Society of America 66, 1124–1124.

    Google Scholar 

  7. Nguyen, D. C., Keller, R. A., Jett, J. H., and Martin, J. C. (1987) Detection of Single Molecules of Phycoerythrin in Hydrodynamically Focused Flows by Laser-Induced Fluorescence, Analytical Chemistry 59, 2158–2161.

    Google Scholar 

  8. Peck, K., Stryer, L., Glazer, A. N., and Mathies, R. A. (1989) Single-Molecule Fluorescence Detection - Auto-Correlation Criterion and Experimental Realization with Phycoerythrin, Proceedings of the National Academy of Sciences of the United States of America 86, 4087–4091.

    Google Scholar 

  9. Moerner, W. E., and Kador, L. (1989) Finding a Single Molecule in a Haystack - Optical-Detection and Spectroscopy of Single Absorbers in Solids, Analytical Chemistry 61, A1217–A1223.

    Google Scholar 

  10. Orrit, M., and Bernard, J. (1990) Single Pentacene Molecules Detected by Fluorescence Excitation in a Para-Terphenyl Crystal, Physical Review Letters 65, 2716–2719.

    Google Scholar 

  11. Shera, E. B., Seitzinger, N. K., Davis, L. M., Keller, R. A., and Soper, S. A. (1990) Detection of Single Fluorescent Molecules, Chemical Physics Letters 174, 553–557.

    Google Scholar 

  12. Tinnefeld, P., and Sauer, M. (2005) Branching out of single-molecule fluorescence spectroscopy: Challenges for chemistry and influence on biology, Angewandte Chemie-International Edition 44, 2642–2671.

    Google Scholar 

  13. Weiss, S. (1999) Fluorescence spectroscopy of single biomolecules, Science 283, 1676–1683.

    Google Scholar 

  14. Moerner, W. E., and Fromm, D. P. (2003) Methods of single-molecule fluorescence spectroscopy and microscopy, Review of Scientific Instruments 74, 3597–3619.

    Google Scholar 

  15. Soper, S. A., Nutter, H. L., Keller, R. A., Davis, L. M., and Shera, E. B. (1993) The Photophysical Constants of Several Fluorescent Dyes Pertaining to Ultrasensitive Fluorescence Spectroscopy, Photochemistry and Photobiology 57, 972–977.

    Google Scholar 

  16. Wieser, S., and Schutz, G. J. (2008) Tracking single molecules in the live cell plasma membrane-Do’s and Don’t’s, Methods 46, 131–140.

    Google Scholar 

  17. Kapanidis, A. N., and Weiss, S. (2002) Fluorescent probes and bioconjugation chemistries for single-molecule fluorescence analysis of biomolecules, Journal of Chemical Physics 117, 10953–10964.

    Google Scholar 

  18. Peterman, E. J. G., Brasselet, S., and Moerner, W. E. (1999) The fluorescence dynamics of single molecules of green fluorescent protein, Journal of Physical Chemistry A 103, 10553–10560.

    Google Scholar 

  19. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A., and Nesbitt, D. J. (2000) Nonexponential “blinking” kinetics of single CdSe quantum dots: A universal power law behavior, Journal of Chemical Physics 112, 3117–3120.

    Google Scholar 

  20. Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., and Ha, T. (2008) Advances in single-molecule fluorescence methods for molecular biology, Annual Review of Biochemistry 77, 51–76.

    Google Scholar 

  21. Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., and Nann, T. (2008) Quantum dots versus organic dyes as fluorescent labels, Nature Methods 5, 763–775.

    Google Scholar 

  22. Alivisatos, A. P. (1996) Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 933–937.

    Google Scholar 

  23. Kaji, N., Tokeshi, M., and Baba, Y. (2007) Single-molecule measurements with a single quantum dot, Chemical Record 7, 295–304.

    Google Scholar 

  24. Alivisatos, P. (2004) The use of nanocrystals in biological detection, Nature Biotechnology 22, 47–52.

    Google Scholar 

  25. Gao, X. H., Yang, L. L., Petros, J. A., Marshal, F. F., Simons, J. W., and Nie, S. M. (2005) In vivo molecular and cellular imaging with quantum dots, Current Opinion in Biotechnology 16, 63–72.

    Google Scholar 

  26. Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., and Weiss, S. (2005) Quantum dots for live cells, in vivo imaging, and diagnostics, Science 307, 538–544.

    Google Scholar 

  27. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green Fluorescent Protein as a Marker for Gene-Expression, Science 263, 802–805.

    Google Scholar 

  28. Giepmans, B. N. G., Adams, S. R., Ellisman, M. H., and Tsien, R. Y. (2006) Review - The fluorescent toolbox for assessing protein location and function, Science 312, 217–224.

    Google Scholar 

  29. Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins, Nature Methods 2, 905–909.

    Google Scholar 

  30. Patterson, G. H., and Lippincott-Schwartz, J. (2002) A photoactivatable GFP for selective photolabeling of proteins and cells, Science 297, 1873–1877.

    Google Scholar 

  31. Lu, H. P., Xun, L. Y., and Xie, X. S. (1998) Single-molecule enzymatic dynamics, Science 282, 1877–1882.

    Google Scholar 

  32. Rutkauskas, D., Novoderezhkin, V., Cogdell, R. J., and van Grondelle, R. (2005) Fluorescence spectroscopy of conformational changes of single LH2 complexes, Biophysical Journal 88, 422–435.

    Google Scholar 

  33. Murphy, D. B. (2001) Fundamentals of light microscopy and electronic imaging, Wiley-Liss, Inc.

    Google Scholar 

  34. Michalet, X., Siegmund, O. H. W., Vallerga, J. V., Jelinsky, P., Millaud, J. E., and Weiss, S. (2007) Detectors for single-molecule fluorescence imaging and spectroscopy, Journal of Modern Optics 54, 239–281.

    Google Scholar 

  35. Magde, D., Elson, E. L., and Webb, W. W. (1974) Fluorescence Correlation Spectroscopy.2. Experimental Realization, Biopolymers 13, 29–61.

    Google Scholar 

  36. Eigen, M., and Rigler, R. (1994) Sorting Single Molecules - Application to Diagnostics and Evolutionary Biotechnology, Proceedings of the National Academy of Sciences of the United States of America 91, 5740–5747.

    Google Scholar 

  37. Verbrugge, S., Kapitein, L. C., and Peterman, E. J. G. (2007) Kinesin moving through the spotlight: Single-motor fluorescence microscopy with submillisecond time resolution, Biophysical Journal 92, 2536–2545.

    Google Scholar 

  38. Anderson, C. M., Georgiou, G. N., Morrison, I. E. G., Stevenson, G. V. W., and Cherry, R. J. (1992) Tracking of Cell-Surface Receptors by Fluorescence Digital Imaging Microscopy Using a Charge-Coupled Device Camera - Low-Density-Lipoprotein and Influenza-Virus Receptor Mobility at 4-Degrees-C, Journal of Cell Science 101, 415–425.

    Google Scholar 

  39. Hecht, E. (1998) Optics, third edition.

    Google Scholar 

  40. Dickson, R. M., Norris, D. J., Tzeng, Y. L., and Moerner, W. E. (1996) Three-dimensional imaging of single molecules solvated in pores of poly(acrylamide) gels, Science 274, 966–969.

    Google Scholar 

  41. Axelrod, D. (2001) Total internal reflection fluorescence microscopy in cell biology, Traffic 2, 764–774.

    Google Scholar 

  42. Leake, M. C., Greene, N. P., Godun, R. M., Granjon, T., Buchanan, G., Chen, S., Berry, R. M., Palmer, T., and Berks, B. C. (2008) Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging, Proceedings of the National Academy of Sciences of the United States of America 105, 15376–15381.

    Google Scholar 

  43. Kapitein, L. C., Janson, M. E., van den Wildenberg, S., Hoogenraad, C. C., Schmidt, C. F., and Peterman, E. J. G. (2008) Microtubule-Driven Multimerization Recruits ase1p onto Overlapping Microtubules, Current Biology 18, 1713–1717.

    Google Scholar 

  44. van Mameren, J., Modesti, M., Kanaar, R., Wyman, C., Peterman, E. J. G., and Wuite, G. J. L. (2009) Counting RAD51 proteins disassembling from nucleoprotein filaments under tension, Nature 457, 745–748.

    Google Scholar 

  45. Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J., and Schindler, H. (1996) Imaging of single molecule diffusion, Proceedings of the National Academy of Sciences of the United States of America 93, 2926–2929.

    Google Scholar 

  46. Thompson, R. E., Larson, D. R., and Webb, W. W. (2002) Precise nanometer localization analysis for individual fluorescent probes, Biophysical Journal 82, 2775–2783.

    Google Scholar 

  47. Yildiz, A., and Selvin, P. R. (2005) Fluorescence imaging with one manometer accuracy: Application to molecular motors, Accounts of Chemical Research 38, 574–582.

    Google Scholar 

  48. Saxton, M. J. (1997) Single-particle tracking: The distribution of diffusion coefficients, Biophysical Journal 72, 1744–1753.

    Google Scholar 

  49. Gross, D., and Webb, W. W. (1986) Molecular Counting of Low-Density-Lipoprotein Particles as Individuals and Small Clusters on Cell-Surfaces, Biophysical Journal 49, 901–911.

    Google Scholar 

  50. Kwok, B. H., Kapitein, L. C., Kim, J. H., Peterman, E. J. G., Schmidt, C. F., and Kapoor, T. M. (2006) Allosteric inhibition of kinesin-5 modulates its processive directional motility, Nature Chemical Biology 2, 480–485.

    Google Scholar 

  51. Lacoste, T. D., Michalet, X., Pinaud, F., Chemla, D. S., Alivisatos, A. P., and Weiss, S. (2000) Ultrahigh-resolution multicolor colocalization of single fluorescent probes, Proceedings of the National Academy of Sciences of the United States of America 97, 9461–9466.

    Google Scholar 

  52. Agrawal, A., Deo, R., Wang, G. D., Wang, M. D., and Nie, S. M. (2008) Nanometer-scale mapping and single-molecule detection with color-coded nanoparticle probes, Proceedings of the National Academy of Sciences of the United States of America 105, 3298–3303.

    Google Scholar 

  53. Churchman, L. S., Okten, Z., Rock, R. S., Dawson, J. F., and Spudich, J. A. (2005) Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time, Proceedings of the National Academy of Sciences of the United States of America 102, 1419–1423.

    Google Scholar 

  54. Zhuang, X. W., Bartley, L. E., Babcock, H. P., Russell, R., Ha, T. J., Herschlag, D., and Chu, S. (2000) A single-molecule study of RNA catalysis and folding, Science 288, 2048–2051.

    Google Scholar 

  55. Mori, T., Vale, R. D., and Tomishige, M. (2007) How kinesin waits between steps, Nature 450, 750–715.

    Google Scholar 

  56. Corrie, J. E. T., Craik, J. S., and Munasinghe, V. R. N. (1998) A homobifunctional rhodamine for labeling proteins with defined orientations of a fluorophore, Bioconjugate Chemistry 9, 160–167.

    Google Scholar 

  57. Asenjo, A. B., and Sosa, H. (2009) A mobile kinesin-head intermediate during the ATP-waiting state, Proceedings of the National Academy of Sciences of the United States of America 106, 5657–5662.

    Google Scholar 

  58. Rosenow, M. A., Huffman, H. A., Phail, M. E., and Wachter, R. M. (2004) The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation, Biochemistry 43, 4464–4472.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin J. G. Peterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

van den Wildenberg, S.M.J.L., Prevo, B., Peterman, E.J.G. (2011). A Brief Introduction to Single-Molecule Fluorescence Methods. In: Peterman, E., Wuite, G. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 783. Humana Press. https://doi.org/10.1007/978-1-61779-282-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-282-3_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-281-6

  • Online ISBN: 978-1-61779-282-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics