Skip to main content

Probing DNA Topology Using Tethered Particle Motion

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 783))

Abstract

Transcription factors mediate the formation of nucleoprotein complexes that are critical for efficient regulation of epigenetic switches. In these complexes, DNA is frequently bent or looped by the protein; other times, strong interactions lead the DNA to fully wrap the regulatory protein(s). The equilibrium between the bending, looping, full and partial wrapping of DNA governs the level of transcriptional regulation and is tuned by biophysical parameters. Characterization of the structure, kinetics, and thermodynamics of formation of such nucleoprotein complexes is fundamental to the understanding of the molecular mechanisms that underlie the operation of the genetic switches controlled by them. Here, we describe in detail how to perform tethered particle motion experiments aimed at understanding how protein–DNA interactions influence the formation and breakdown of these regulatory complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Towles, K. B., Beausang, J. F., Garcia, H. G., Phillips, R., and Nelson, P. C. (2009) First-principles calculation of DNA looping in tethered particle experiments, Phys Biol 6, 25001.

    Google Scholar 

  2. Segall, D. E., Nelson, P. C., and Phillips, R. (2006) Volume-Exclusion Effects in Tethered-Particle Experiments: Bead Size Matters, Phys. Rev. Lett. 96, 088306.

    Google Scholar 

  3. Wong, O. K., Guthold, M., Erie, D. A., and Gelles, J. (2008) Interconvertible lac repressor-DNA loops revealed by single-molecule experiments, PLoS Biol 6, e232.

    Google Scholar 

  4. Vanzi, F., Broggio, C., Sacconi, L., and Pavone, F. S. (2006) Lac repressor hinge flexibility and DNA looping: single molecule kinetics by tethered particle motion, Nucleic Acids Research 34, 3409–3420.

    Google Scholar 

  5. Pouget, N., Dennis, C., Turlan, C., Grigoriev, M., Chandler, M., and Salome, L. (2004) Single-particle tracking for DNA tether length monitoring, Nucleic Acids Res 32, e73.

    Google Scholar 

  6. Schafer, D. A., Gelles, J., Sheetz, M. P., and Landick, R. (1991) Transcription by single molecules of RNA polymerase observed by light microscopy, Nature 352, 444–448.

    Google Scholar 

  7. Bustamante, C., Bryant, Z., and Smith, S. B. (2003) Ten years of tension: single-molecule DNA mechanics, Nature 421, 423–427.

    Google Scholar 

  8. Ali, B. M., Amit, R., Braslavsky, I., Oppenheim, A. B., Gileadi, O., and Stavans, J. (2001) Compaction of single DNA molecules induced by binding of integration host factor (IHF), Proc Natl Acad Sci U S A 98, 10658–10663.

    Google Scholar 

  9. Dixit, S., Singh-Zocchi, M., Hanne, J., and Zocchi, G. (2005) Mechanics of binding of a single integration-host-factor protein to DNA, Phys Rev Lett 94, 118101.

    Google Scholar 

  10. Finzi, L., and Gelles, J. (1995) Measurement of lactose repressor-mediated loop formation and breakdown in single DNA molecules, Science 267, 378–380.

    Google Scholar 

  11. Han, L., Garcia, H. G., Blumberg, S., Towles, K. B., Beausang, J. F., Nelson, P. C., and Phillips, R. (2009) Concentration and length dependence of DNA looping in transcriptional regulation, PLoS ONE 4, e5621.

    Google Scholar 

  12. Pouget, N., Turlan, C., Destainville, N., Salome, L., and Chandler, M. (2006) IS911 transpososome assembly as analysed by tethered particle motion, Nucleic Acids Res 34, 4313–4323.

    Google Scholar 

  13. Rutkauskas, D., Zhan, H., Matthews, K. S., Pavone, F. S., and Vanzi, F. (2009) Tetramer opening in LacI-mediated DNA looping, Proc Natl Acad Sci U S A 106, 16627–16632.

    Google Scholar 

  14. van den Broek, B., Vanzi, F., Normanno, D., Pavone, F. S., and Wuite, G. J. (2006) Real-time observation of DNA looping dynamics of Type IIE restriction enzymes NaeI and NarI, Nucleic Acids Res 34, 167–174.

    Google Scholar 

  15. Zurla, C., Manzo, C., Dunlap, D., Lewis, D. E., Adhya, S., and Finzi, L. (2009) Direct demonstration and quantification of long-range DNA looping by the lambda bacteriophage repressor, Nucleic Acids Res 37, 2789–2795.

    Google Scholar 

  16. Nash, H. A. (1996) The HU and IHF proteins: accessory factors for complex protein-DNA assemblies, In Regulation of gene Expression in E. coli (Lin, E. E. C., and Simon Lynch, A., Ed.), R.G., Landes Company.

    Google Scholar 

  17. Werner, M. H., Bianchi, M. E., Gronenborn, A. M., and Clore, G. M. (1995) NMR Spectroscopic Analysis of the DNA Conformation Induced by the Human Testis-Determining Factor SRY, Biochemistry 34, 11998–12004.

    Google Scholar 

  18. Luger, K., and Richmond, T. J. (1998) DNA binding within the nucleosome core, Current Opinion in Structural Biology 8, 33–40.

    Google Scholar 

  19. Tsodikov, O. V., Saecker, R. M., Melcher, S. E., Levandoski, M. M., Frank, D. E., Capp, M. W., and Record, M. T. (1999) Wrapping of flanking non-operator DNA in lac repressor-operator complexes: implications for DNA looping, Journal of Molecular Biology 294, 639–655.

    Google Scholar 

  20. Gaszner, M., and Felsenfeld, G. (2006) Insulators: exploiting transcriptional and epigenetic mechanisms, Nat Rev Genet 7, 703–713.

    Google Scholar 

  21. Lia, G., Bensimon, D., Croquette, V., Allemand, J. F., Dunlap, D., Lewis, D. E. A., Adhya, S. C., and Finzi, L. (2003) Supercoiling and denaturation in Gal repressor/heat unstable nucleoid protein (HU)-mediated DNA looping, Proceedings Of The National Academy Of Sciences Of The United States Of America 100, 11373–11377.

    Google Scholar 

  22. Dodd, I. B., Shearwin, K. E., and Egan, J. B. (2005) Revisited gene regulation in bacteriophage lambda, Curr Opin Genet Dev 15, 145–152.

    Google Scholar 

  23. Nelson, P. C., Zurla, C., Brogioli, D., Beausang, J. F., Finzi, L., and Dunlap, D. (2006) Tethered particle motion as a diagnostic of DNA tether length, J Phys Chem B Condens Matter Mater Surf Interfaces Biophys 110, 17260–17267.

    Google Scholar 

  24. Colquhoun, D., and Sigworth, F. J. (1983) Fitting and Statistical Analysis of Single Channel Recording, In Single Channel Recording (Sakmann, B., and Neher, E., Eds.), pp 191–263, Plenum Press, New York.

    Google Scholar 

  25. Vanzi, F., Sacconi, L., and Pavone, F. S. (2007) Analysis of kinetics in noisy systems: application to single molecule tethered particle motion, Biophys J 93, 21–36.

    Google Scholar 

  26. Han, L., Lui, B. H., Blumberg, S., Beausang, J. F., Nelson, P. C., and Phillips, R. (2009) Calibration of Tethered Particle Motion Experiments, pp 123–138.

    Google Scholar 

  27. Manzo, C., and Finzi, L. (2010) Quantitative analysis of DNA looping kinetics from tethered particle motion experiments, In Molecule Tools, Part B: Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods (Nils G. Walter, Ed.),Methods In Enzymology 475, 199–220.

    Google Scholar 

  28. Watkins, L. P., and Yang, H. (2005) Detection of intensity change points in time-resolved single-molecule measurements, Journal of Physical Chemistry B 109, 617–628.

    Google Scholar 

Download references

Acknowledgments

We acknowledge Doriano Brogioli who adapted the Particle Tracking VI from code available from National Instruments libraries. We are grateful to Phil Nelson and John Beausang for strategies with which to filter instrumental drift from the data, as well as to Qing Shao for an image of the PCR product.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Finzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dunlap, D., Zurla, C., Manzo, C., Finzi, L. (2011). Probing DNA Topology Using Tethered Particle Motion. In: Peterman, E., Wuite, G. (eds) Single Molecule Analysis. Methods in Molecular Biology, vol 783. Humana Press. https://doi.org/10.1007/978-1-61779-282-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-282-3_16

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-281-6

  • Online ISBN: 978-1-61779-282-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics