Skip to main content

Construction of Protein Interaction Networks Based on the Label-Free Quantitative Proteomics

  • Protocol
  • First Online:
Network Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 781))

Abstract

Multiprotein complexes are essential building blocks for many cellular processes in an organism. Taking the process of transcription as an example, the interplay of several chromatin-remodeling complexes is responsible for the tight regulation of gene expression. Knowing how those proteins associate into protein complexes not only helps to improve our understanding of these cellular processes, but can also lead to the discovery of the function of novel interacting proteins. Given the large number of proteins with little to no functional annotation throughout many organisms, including human, the identification and characterization of protein complexes has grown into a major focus of network biology. Toward this goal, we have developed several computational approaches based upon label-free quantitative proteomics approaches for the analysis of protein complexes and protein interaction networks. Here, we describe the computational approaches used to build probabilistic protein interaction networks, which are detailed in this chapter using the example of complexes involved in chromatin remodeling and transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ewing, R. M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., McBroom-Cerajewski, L., Robinson, M. D., O’Connor, L., Li, M., Taylor, R., Dharsee, M., Ho, Y., Heilbut, A., Moore, L., Zhang, S., Ornatsky, O., Bukhman, Y. V., Ethier, M., Sheng, Y., Vasilescu, J., Abu-Farha, M., Lambert, J. P., Duewel, H. S., Stewart, II, Kuehl, B., Hogue, K., Colwill, K., Gladwish, K., Muskat, B., Kinach, R., Adams, S. L., Moran, M. F., Morin, G. B., Topaloglou, T., and Figeys, D. (2007) Large-scale mapping of human protein-protein interactions by mass spectrometry, Mol Syst Biol 3, 89.

    Article  PubMed  Google Scholar 

  2. Behrends, C., Sowa, M. E., Gygi, S. P., and Harper, J. W. (2010) Network organization of the human autophagy system, Nature 466, 68–76.

    Article  PubMed  CAS  Google Scholar 

  3. Breitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., Neduva, V., Larsen, B., Lin, Z. Y., Breitkreutz, B. J., Stark, C., Liu, G., Ahn, J., Dewar-Darch, D., Reguly, T., Tang, X., Almeida, R., Qin, Z. S., Pawson, T., Gingras, A. C., Nesvizhskii, A. I., and Tyers, M. (2010) A global protein kinase and phosphatase interaction network in yeast, Science 328, 1043–1046.

    Article  PubMed  CAS  Google Scholar 

  4. Sardiu, M. E., Cai, Y., Jin, J., Swanson, S. K., Conaway, R. C., Conaway, J. W., Florens, L., and Washburn, M. P. (2008) Probabilistic assembly of human protein interaction networks from label-free quantitative proteomics, Proc Natl Acad Sci USA 105, 1454–1459.

    Article  PubMed  CAS  Google Scholar 

  5. Sowa, M. E., Bennett, E. J., Gygi, S. P., and Harper, J. W. (2009) Defining the human deubiquitinating enzyme interaction landscape, Cell 138, 389–403.

    Article  PubMed  CAS  Google Scholar 

  6. Liu, H., Sadygov, R. G., and Yates, J. R., 3rd. (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics, Anal Chem 76, 4193–4201.

    Article  PubMed  CAS  Google Scholar 

  7. Old, W. M., Meyer-Arendt, K., Aveline-Wolf, L., Pierce, K. G., Mendoza, A., Sevinsky, J. R., Resing, K. A., and Ahn, N. G. (2005) Comparison of label-free methods for quantifying human proteins by shotgun proteomics, Mol Cell Proteomics 4, 1487–1502.

    Article  PubMed  CAS  Google Scholar 

  8. Zybailov, B., Coleman, M. K., Florens, L., and Washburn, M. P. (2005) Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling, Anal Chem 77, 6218–6224.

    Article  PubMed  CAS  Google Scholar 

  9. Paoletti, A. C., Parmely, T. J., Tomomori-Sato, C., Sato, S., Zhu, D., Conaway, R. C., Conaway, J. W., Florens, L., and Washburn, M. P. (2006) Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors, Proc Natl Acad Sci USA 103, 18928–18933.

    Article  PubMed  CAS  Google Scholar 

  10. Sardiu, M. E., Gilmore, J. M., Carrozza, M. J., Li, B., Workman, J. L., Florens, L., and Washburn, M. P. (2009) Determining protein complex connectivity using a probabilistic deletion network derived from quantitative proteomics, PLoS One 4, e7310.

    Article  PubMed  Google Scholar 

  11. Swanson, S. K., Florens, L., and Washburn, M. P. (2009) Generation and analysis of multidimensional protein identification technology datasets, Methods Mol Biol 492, 1–20.

    Article  PubMed  CAS  Google Scholar 

  12. Eng, J., McCormack, A. L., and Yates, J. R., 3rd. (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database., J Am Soc Mass Spectrom 5, 976–989.

    Article  CAS  Google Scholar 

  13. Tabb, D. L., McDonald, W. H., and Yates, J. R., 3rd. (2002) DTASelect and Contrast: tools for assembling and comparing protein identifications from shotgun proteomics, J Proteome Res 1, 21–26.

    Article  PubMed  CAS  Google Scholar 

  14. Zybailov, B., Mosley, A. L., Sardiu, M. E., Coleman, M. K., Florens, L., and Washburn, M. P. (2006) Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae, J Proteome Res 5, 2339–2347.

    Article  PubMed  CAS  Google Scholar 

  15. Kline, K. G., Finney, G. L., and Wu, C. C. (2009) Quantitative strategies to fuel the merger of discovery and hypothesis-driven shotgun proteomics, Brief Funct Genomic Proteomic 8, 114–125.

    Article  PubMed  CAS  Google Scholar 

  16. Lundgren, D. H., Hwang, S. I., Wu, L., and Han, D. K. (2010) Role of spectral counting in quantitative proteomics, Expert Rev Proteomics 7, 39–53.

    Article  PubMed  CAS  Google Scholar 

  17. Zhang, Y., Wen, Z., Washburn, M. P., and Florens, L. (2010) Refinements to label free proteome quantitation: how to deal with peptides shared by multiple proteins, Anal Chem 82, 2272–2281.

    Article  PubMed  CAS  Google Scholar 

  18. Kuruvilla, F. G., Park, P. J., and Schreiber, S. L. (2002) Vector algebra in the analysis of genome-wide expression data, Genome Biol 3, RESEARCH0011.

    Google Scholar 

  19. Alter, O., Brown, P. O., and Botstein, D. (2000) Singular value decomposition for genome-wide expression data processing and modeling, Proc Natl Acad Sci USA 97, 10101–10106.

    Article  PubMed  CAS  Google Scholar 

  20. Wall, M. E., Dyck, P. A., and Brettin, T. S. (2001) SVDMAN--singular value decomposition analysis of microarray data, Bioinformatics 17, 566–568.

    Article  PubMed  CAS  Google Scholar 

  21. Sardiu, M. E., Florens, L., and Washburn, M. P. (2009) Evaluation of clustering algorithms for protein complex and protein interaction network assembly, J Proteome Res 8, 2944–2952.

    Article  PubMed  CAS  Google Scholar 

  22. Gavin, A. C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L. J., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M. A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A. M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J. M., Kuster, B., Bork, P., Russell, R. B., and Superti-Furga, G. (2006) Proteome survey reveals modularity of the yeast cell machinery, Nature 440, 631–636.

    Article  PubMed  CAS  Google Scholar 

  23. Gavin, A. C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J. M., Michon, A. M., Cruciat, C. M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M. A., Copley, R. R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature 415, 141–147.

    Article  PubMed  CAS  Google Scholar 

  24. Meunier, B., Dumas, E., Piec, I., Bechet, D., Hebraud, M., and Hocquette, J. F. (2007) Assessment of hierarchical clustering methodologies for proteomic data mining, J Proteome Res 6, 358–366.

    Article  PubMed  CAS  Google Scholar 

  25. Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res 13, 2498–2504.

    Article  PubMed  CAS  Google Scholar 

  26. Chang, I. F. (2006) Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein complexes in eukaryotes, Proteomics 6, 6158–6166.

    Article  PubMed  CAS  Google Scholar 

  27. Krogan, N. J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A. P., Punna, T., Peregrin-Alvarez, J. M., Shales, M., Zhang, X., Davey, M., Robinson, M. D., Paccanaro, A., Bray, J. E., Sheung, A., Beattie, B., Richards, D. P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M. M., Vlasblom, J., Wu, S., Orsi, C., Collins, S. R., Chandran, S., Haw, R., Rilstone, J. J., Gandi, K., Thompson, N. J., Musso, G., St Onge, P., Ghanny, S., Lam, M. H., Butland, G., Altaf-Ul, A. M., Kanaya, S., Shilatifard, A., O’Shea, E., Weissman, J. S., Ingles, C. J., Hughes, T. R., Parkinson, J., Gerstein, M., Wodak, S. J., Emili, A., and Greenblatt, J. F. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae, Nature 440, 637–643.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Stowers Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael P. Washburn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sardiu, M.E., Washburn, M.P. (2011). Construction of Protein Interaction Networks Based on the Label-Free Quantitative Proteomics. In: Cagney, G., Emili, A. (eds) Network Biology. Methods in Molecular Biology, vol 781. Humana Press. https://doi.org/10.1007/978-1-61779-276-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-276-2_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-275-5

  • Online ISBN: 978-1-61779-276-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics