Skip to main content

Direct Differentiation of Human Embryonic Stem Cells into Selective Neurons on Nanoscale Ridge/Groove Pattern Arrays

  • Protocol
  • First Online:
Book cover Human Embryonic and Induced Pluripotent Stem Cells

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1568 Accesses

Abstract

Human embryonic stem cells (hESCs) are pluripotent cells that have the potential to be used for tissue engineering and regenerative medicine. Biochemical and biological agents are widely used to induce hESC differentiation. However, it would be better if we could induce the differentiation of hESCs without using such agents because these factors are expensive. It is also difficult to determine optimal concentrations of agents for efficient differentiation. Moreover, the mechanism of differentiation induced by these factors is still not fully understood. Using UV-assisted capillary force lithography, we constructed nanoscale ridge/groove pattern arrays with a dimension and alignment that were finely controlled over a large area. Human embryonic stem cells seeded onto the 350-nm ridge/groove pattern arrays differentiated into neuronal lineage after 5 days, in the absence of differentiation-inducing agents. This nanoscale technique could be used for a new neuronal differentiation protocol of hESCs and may also be useful for nanostructured scaffolding for nerve injury repair. In this chapter, we describe this method in detail. This protocol can be used to create nanoscale ridge/groove pattern arrays for effective and rapid directing of the differentiation of hESCs into a neuronal lineage without the use of any differentiation-inducing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dhara, S. K., and Stice, S. L. (2008) Neural Differentiation of Human Embryonic Stem Cells, Journal of Cellular Biochemistry 105, 633–640.

    Article  PubMed  CAS  Google Scholar 

  2. Kurpinski, K., Chu, J., Hashi, C., and Li, S. (2006) Anisotropic mechanosensing by mesenchymal stem cells, P Natl Acad Sci USA 103, 16095–16100.

    Article  CAS  Google Scholar 

  3. O’Cearbhaill, E. D., Punchard, M. A., Murphy, M., Barry, F. P., McHugh, P. E., and Barron, V. (2008) Response of mesenchymal stem cells to the biomechanical environment of the endothelium on a flexible tubular silicone substrate, Biomaterials 29, 1610–1619.

    Article  PubMed  Google Scholar 

  4. Ruiz, S. A., and Chen, C. S. (2008) Emergence of Patterned Stem Cell Differentiation Within Multicellular Structures, Stem Cells 26, 2921–2927.

    Article  PubMed  Google Scholar 

  5. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K., and Chen, C. S. (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment, Dev Cell 6, 483–495.

    Article  PubMed  CAS  Google Scholar 

  6. Park, J., Cho, C. H., Parashurama, N., Li, Y. W., Berthiaume, F., Toner, M., Tilles, A. W., and Yarmush, M. L. (2007) Microfabrication-based modulation of embryonic stem cell differentiation, Lab Chip 7, 1018–1028.

    Article  PubMed  CAS  Google Scholar 

  7. Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006) Matrix elasticity directs stem cell lineage specification, Cell 126, 677–689.

    Article  PubMed  CAS  Google Scholar 

  8. Hashi, C. K., Zhu, Y. Q., Yang, G. Y., Young, W. L., Hsiao, B. S., Wang, K., Chu, B., and Li, S. (2007) Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts, P Natl Acad Sci USA 104, 11915–11920.

    Article  CAS  Google Scholar 

  9. Xin, X. J., Hussain, M., and Mao, J. J. (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold, Biomaterials 28, 316–325.

    Article  PubMed  CAS  Google Scholar 

  10. Dalby, M. J., Gadegaard, N., Tare, R., Andar, A., Riehle, M. O., Herzyk, P., Wilkinson, C. D. W., and Oreffo, R. O. C. (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder, Nat Mater 6, 997–1003.

    Article  PubMed  CAS  Google Scholar 

  11. Oh, S., Brammer, K. S., Li, Y. S. J., Teng, D., Engler, A. J., Chien, S., and Jin, S. (2009) Stem cell fate dictated solely by altered nanotube dimension, P Natl Acad Sci USA 106, 2130–2135.

    Article  CAS  Google Scholar 

  12. Xie, J. W., Willerth, S. M., Li, X. R., Macewan, M. R., Rader, A., Sakiyama-Elbert, S. E., and Xia, Y. N. (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages, Biomaterials 30, 354–362.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, F., Murugan, R., Wang, S., and Ramakrishna, S. (2005) Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering, Biomaterials 26, 2603–2610.

    Article  PubMed  CAS  Google Scholar 

  14. Christopherson, G. T., Song, H., and Mao, H. Q. (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation, Biomaterials 30, 556–564.

    Article  PubMed  CAS  Google Scholar 

  15. Ellis-Behnke, R. G., Liang, Y. X., You, S. W., Tay, D. K. C., Zhang, S. G., So, K. F., and Schneider, G. E. (2006) Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision, P Natl Acad Sci USA 103, 5054–5059.

    Article  CAS  Google Scholar 

  16. Silva, G. A., Czeisler, C., Niece, K. L., Beniash, E., Harrington, D. A., Kessler, J. A., and Stupp, S. I. (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers, Science 303, 1352–1355.

    Article  PubMed  CAS  Google Scholar 

  17. Yim, E. K. F., Pang, S. W., and Leong, K. W. (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage, Exp Cell Res 313, 1820–1829.

    Article  PubMed  CAS  Google Scholar 

  18. Sridharan, I., Kim, T., and Wang, R. (2009) Adapting collagen/CNT matrix in directing hESC differentiation, Biochemical and Biophysical Research Communications 381, 508–512.

    Article  PubMed  CAS  Google Scholar 

  19. Shih, Y. R. V., Chen, C. N., Tsai, S. W., Wang, Y. J., and Lee, O. K. (2006) Growth of mesenchymal stem cells on electrospun type I collagen nanofibers, Stem Cells 24, 2391–2397.

    Article  PubMed  CAS  Google Scholar 

  20. Jan, E., and Kotov, N. A. (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite, Nano Letters 7, 1123–1128.

    Article  PubMed  CAS  Google Scholar 

  21. Kim, S. J., Lee, J. K., Kim, J. W., Jung, J. W., Seo, K., Park, S. B., Roh, K. H., Lee, S. R., Hong, Y. H., Kim, S. J., Lee, Y. S., Kim, S. J., and Kang, K. S. (2008) Surface modification of polydimethylsiloxane (PDMS) induced proliferation and neural-like cells differentiation of umbilical cord blood-derived mesenchymal stem cells, Journal of Materials Science-Materials in Medicine 19, 2953–2962.

    Article  PubMed  CAS  Google Scholar 

  22. Recknor, J. B., Sakaguchi, D. S., and Mallapragada, S. K. (2006) Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates, Biomaterials 27, 4098–4108.

    Article  PubMed  CAS  Google Scholar 

  23. Kim, D. H., Seo, C. H., Han, K., Kwon, K. W., Levchenko, A., and Suh, K. Y. (2009) Guided Cell Migration on Microtextured Substrates with Variable Local Density and Anisotropy, Advanced Functional Materials 19, 1579–1586.

    Article  PubMed  CAS  Google Scholar 

  24. Kwon, K. W., Choi, S. S., Lee, S. H., Kim, B., Lee, S. N., Park, M. C., Kim, P., Hwang, S. Y., and Suh, K. Y. (2007) Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference, Lab Chip 7, 1461–1468.

    Article  PubMed  CAS  Google Scholar 

  25. Seidlits, S. K., Lee, J. Y., and Schmidt, C. E. (2008) Nanostructured scaffolds for neural applications, Nanomedicine 3, 183–199.

    Article  PubMed  CAS  Google Scholar 

  26. Chai, C., and Leong, K. W. (2007) Biomaterials approach to expand and direct differentiation of stem cells, Mol Ther 15, 467–480.

    Article  PubMed  CAS  Google Scholar 

  27. Engel, E., Michiardi, A., Navarro, M., Lacroix, D., and Planell, J. A. (2008) Nanotechnology in regenerative medicine: the materials side, Trends in Biotechnology 26, 39–47.

    Article  PubMed  CAS  Google Scholar 

  28. Ilic, D., Genbacev, O., and Krtolica, A. (2007) Derivation of hESC from intact blastocysts, Curr Protoc Stem Cell Biol Chapter 1, Unit 1A 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kye-Seong Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Kim, KS., Jung, H., Kim, K. (2011). Direct Differentiation of Human Embryonic Stem Cells into Selective Neurons on Nanoscale Ridge/Groove Pattern Arrays. In: Ye, K., Jin, S. (eds) Human Embryonic and Induced Pluripotent Stem Cells. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-267-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-267-0_31

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-266-3

  • Online ISBN: 978-1-61779-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics