Skip to main content

Chondrogenic Differentiation of hESC in Micromass Culture

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Human adult cartilage has limited capacity for self-renewal. Accordingly, repair of cartilage tissue damaged as a result of acute traumatic injury or via chronic wear or degenerative disease, such as arthritis, is a major clinical problem. Human embryonic stem cells (hESCs) could provide an unlimited source of chondrogenic progenitors for cartilage repair. In order to realize this potential, it is necessary to develop methodo­logies for the directed differentiation of hESCs into chondrocytes. In this chapter, we describe culture systems and conditions, which we have developed for direct, progressive, and substantially uniform differentiation of pluripotent hESCs into the chondrogenic lineage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Khan W.S., Johnson D.S., Hardingham T.E. (2010) The potential of stem cells in the treatment of knee cartilage defects. Knee. Epub ahead of print

    Google Scholar 

  2. Nelson L., Fairclough J., Archer C.W. (2010) Use of stem cells in the biological repair of articular cartilage. Expert Opin Biol Ther 10, 43–55

    Article  PubMed  CAS  Google Scholar 

  3. Oldfield R.S.N., Archer C.W. (2005) Current strategies for articular cartilage repair. Eur Cells Mat 9, 23–32

    Google Scholar 

  4. Vinatier C., Bouffi C., Merceron C., et al. (2009) Cartilage tissue engineering: towards a biomaterial assisted mesenchymal cell stem cell therapy. Curr Stem Cell Res Ther 4, 318–329

    Article  PubMed  CAS  Google Scholar 

  5. Gong G., Ferrari D., Dealy C.N. et al.(2010) Direct and progressive differentiation of human embryonic stem cells into the chondrogenic lineage. J Cell Physiol 224, 664–671

    Article  PubMed  CAS  Google Scholar 

  6. Ahrens P.B., Solursh M., Reiter R.S. (1977) Stage-related capacity for limb chondrogenesis in cell culture. Dev Biol 60,69–82

    Article  PubMed  CAS  Google Scholar 

  7. Solursh M., Reiter R.S. (1980) Evidence for histogenic interactions during in vitro limb chondrogenesis. Dev Biol 78,141–150

    Article  PubMed  CAS  Google Scholar 

  8. Gay S.W., Kosher R.A. (1984) Uniform cartilage differentiation in micromass cultures prepared from a relatively homogeneous ­population of chondrogenic progenitor cells of the chick limb bud: effect of prostaglandins. J Exp Zool 232,317–326

    Article  PubMed  CAS  Google Scholar 

  9. Kosher R.A., Gay S.W., Kamanitz J.R. et al. (1986) Cartilage proteoglycan core protein gene expression during limb cartilage differentiation. Dev Biol 118,112–117

    Article  PubMed  CAS  Google Scholar 

  10. Kosher R.A., Kulyk W.M., Gay S.W. (1986) Collagen gene expression during limb cartilage differentiation. J Cell Biol 102,1151–1156

    Article  PubMed  CAS  Google Scholar 

  11. Kulyk W.M., Coelho C.N., Kosher R.A. (1991) Type IX collagen gene expression during limb cartilage differentiation. Matrix 11, 282–288

    PubMed  CAS  Google Scholar 

  12. Daniels K., Reiter R., Solursh M. (1996) Micromass cultures of limb and other mesenchyme. Methods Cell Biol 51,237–247

    Article  PubMed  CAS  Google Scholar 

  13. Kulyk W.M., Rodgers B.J., Greer K. et al. (1989) Promotion of embryonic chick limb cartilage differentiation by transforming growth factor-beta. Dev Biol 135,424–430

    Article  PubMed  CAS  Google Scholar 

  14. Koay E.J., Hoben G.M., Athanasiou K.A. (2007) Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25, 2183–2190

    Article  PubMed  CAS  Google Scholar 

  15. Lee E.U., Lee H-N., Kang H-J. et al. (2010) Novel embryoid body-based method to derive mesenchymal stem cells from human embryonic stem cells. Tisse Eng A 16,705–715

    Article  CAS  Google Scholar 

  16. Brown S.E., Tong W., Krebsbach P.H. (2008) The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tiss Organs 189, 256–260

    Article  Google Scholar 

  17. Hwang N.S., Varghese S., Lee H.J. et al. (2008) In vivo commitment and functional tissue regeneration using human embryonic stem cell-derived mesenchymal cells. Proc Natl Acad Sci 105, 20641–20646

    Article  PubMed  CAS  Google Scholar 

  18. Arpornmaeklong P., Brown S.E., Wang Z., et al. (2009) Phenotypic characterization, osteoblastic differentiation, and bone regeneration capacity of human embryonic stem cell-derived mesenchymal stem cells. Stem Cells Dev 18, 955–968

    Article  PubMed  CAS  Google Scholar 

  19. Stavropoulos, M.E., Mengarelli I., Barberi T. (2009) Differentiation of multipotent mesenchymal precursors and skeletal myoblasts from human embryonic stem cells. Curr Protocols in Stem Cell Biology 9, 1 F8.1–10

    Google Scholar 

  20. Toh W.S., Guo X.M., Choo A.B. et al. (2009) Differentiation and enrichment of expandable chondrogenic cells from human embryonic stem cells. J Cell Mol Med 13, 3570–3590

    Article  PubMed  Google Scholar 

  21. Nakagawa T., Lee S.Y., Reddi A.H. (2009) Induction of chondrogenesis from human embryonic stem cells without embryoid body formation by bone morphogenetic protein 7 and transforming growth factor β1. Arthritis Rheum 60, 3686–3692

    Article  PubMed  CAS  Google Scholar 

  22. Zhang L., Su P., Xu C. et al. (2010) Chondro­genic differentiation of human mesenchymal stem cells: a comparison between micromass and pellet culture systems. Biotech Lett. Epub May 13

    Google Scholar 

  23. Englund M.C.O., Caisander G., Noaksson K. et al (2010) The establishment of 20 different human embryonic stem cell lines and subclones: a report on derivation culture characterisation and banking. In vitro Cell Dev Biol 46, 217–230

    Article  Google Scholar 

  24. Gong G., Roach M.L., Jiang L. et al. (2010) Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell Reprogram 12,151–160

    PubMed  CAS  Google Scholar 

  25. Phillips B.W., Horne R., Lay T.S. et al (2008) Attachment and growth of human embryonic stem cells on microcarriers. Biotechnol 138,24–32

    Article  CAS  Google Scholar 

  26. Bajpai R., Lesperance J., Kim M, et al. (2008) Efficient propagation of single cells Accutase dissociated human embryonic stem cells. Mol Reprod Dev 75, 818–827

    Article  PubMed  CAS  Google Scholar 

  27. Venuri M.C., Schimmel T., Colls P. et al. (2007) Derivation of human embryonic stem cells in xeno-free conditions. Methods Mol Biol 407, 1–10

    Article  Google Scholar 

  28. Rajala K., Lindroos B., Hussein S.M. et al. (2010) A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLOS One 5, e10246

    Article  PubMed  Google Scholar 

  29. Thomson J.A., Itskovitz-Eldor J., Shaprio S.S. et al. (1998) Embryonic stem cells lines derived from human blastocysts. Science 282, 1145–1147

    Article  PubMed  CAS  Google Scholar 

  30. Toh W.S., Yang Z., Liu H. et al (2007) Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25, 950–960

    Article  PubMed  CAS  Google Scholar 

  31. Carpenter M.K., Xu C., Daigh C.A. et al. (2003) Protocols for the isolation and maintenance of human embryonic stem cells. Humana Press, New Jersey, USA

    Google Scholar 

  32. WiCell Research Institute (2008) Introduction to human embryonic stem cell culture methods, version 4. Madison, Wisconsin, USA.

    Google Scholar 

  33. Li X., Krawetz R., Liu S. et al. (2009) ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum Reprod 24, 580–589

    Article  PubMed  CAS  Google Scholar 

  34. Watanabe K., Ueno M., Kamiya D. et al (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25, 681–686

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline N. Dealy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Ferrari, D., Gong, G., Kosher, R.A., Dealy, C.N. (2011). Chondrogenic Differentiation of hESC in Micromass Culture. In: Ye, K., Jin, S. (eds) Human Embryonic and Induced Pluripotent Stem Cells. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-267-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-267-0_26

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-266-3

  • Online ISBN: 978-1-61779-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics