Skip to main content

Generation of Induced Pluripotent Stem Cells from Human Amnion Cells

  • Protocol
  • First Online:
Human Embryonic and Induced Pluripotent Stem Cells

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 1574 Accesses

Abstract

Induced pluripotent stem (iPS) cells have been generated through nuclear reprogramming of somatic cells via retrovirus- or lentivirus-mediated transduction of exogenous reprogramming factors OCT3/4, SOX2, KLF4, and c-MYC. The extraembryonic amnion is considered to be a promising candidate cell source for cellular therapeutics and the generation of iPS cells because it contains a large number of cells that do not require any genetic or epigenetic modifications. In this chapter, we describe how to generate human amniotic membrane (hAM) primary cells derived from placenta and how to establish the iPS cells from these hAM cells using four reprogramming factors. The hAM-derived iPS cells could be useful for personal regenerative medicine for future infants and useful as genetic disease models and for disease-specific drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cunningham, F. G., Williams, J. W. (2005) Implantation, embryogenesis, and placenta development. Williams obstetrics. 22nd ed. New York: McGraw-Hill Professional. pp. 39–90.

    Google Scholar 

  2. Sadler, T. W. (2006) Third month to birth : the fetus and placenta. Langman’s Medical Embryology. 10th ed. Philadelphia: Lippincott Williams & Wilkins. pp. 89–109.

    Google Scholar 

  3. Portmann-Lanz, C. B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., et al. (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. American journal of obstetrics and gynecology 194: 664–673.

    Article  PubMed  CAS  Google Scholar 

  4. Fukuchi, Y., Nakajima, H., Sugiyama, D., Hirose, I., Kitamura, T., et al. (2004) Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 22: 649–658.

    Article  PubMed  CAS  Google Scholar 

  5. Kawamichi, Y., Cui, C. H., Toyoda, M., Makino, H., Horie, A., et al. (2010) Cells of extraembryonic mesodermal origin confer human dystrophin in the mdx model of Duchenne muscular dystrophy. J Cell Physiol 223: 695–702.

    PubMed  CAS  Google Scholar 

  6. Wernig, K., Griesbacher, M., Andreae, F., Hajos, F., Wagner, J., et al. (2008) Depot formulation of vasoactive intestinal peptide by protamine-based biodegradable nanoparticles. J Control Release 130: 192–198.

    Article  PubMed  CAS  Google Scholar 

  7. Polo, J. M., Liu, S., Figueroa, M. E., Kulalert, W., Eminli, S., et al. (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28: 848–855.

    Article  PubMed  CAS  Google Scholar 

  8. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., et al. (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467: 285–290.

    Article  PubMed  CAS  Google Scholar 

  9. Zhao, P., Ise, H., Hongo, M., Ota, M., Konishi, I., et al. (2005) Human amniotic mesenchymal cells have some characteristics of cardiomyocytes. Transplantation 79: 528–535.

    Article  PubMed  Google Scholar 

  10. Miki, T., Lehmann, T., Cai, H., Stolz, D. B., Strom, S. C. (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23: 1549–1559.

    Article  PubMed  CAS  Google Scholar 

  11. Tsuji, H., Miyoshi, S., Ikegami, Y., Hida, N., Asada, H., et al. (2010) Xenografted human amniotic membrane-derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circ Res 106: 1613–1623.

    Article  PubMed  CAS  Google Scholar 

  12. Nagata, S., Toyoda, M., Yamaguchi, S., Hirano, K., Makino, H., et al. (2009) Efficient reprogramming of human and mouse primary extra-embryonic cells to pluripotent stem cells. Genes Cells 14: 1395–1404.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Umezawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Humana Press

About this protocol

Cite this protocol

Toyoda, M., Nagata, S., Makino, H., Akutsu, H., Tada, T., Umezawa, A. (2011). Generation of Induced Pluripotent Stem Cells from Human Amnion Cells. In: Ye, K., Jin, S. (eds) Human Embryonic and Induced Pluripotent Stem Cells. Springer Protocols Handbooks. Humana Press. https://doi.org/10.1007/978-1-61779-267-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-267-0_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-266-3

  • Online ISBN: 978-1-61779-267-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics