Skip to main content

Bimolecular-Fluorescence Complementation Assay to Monitor Kinase–Substrate Interactions In Vivo

  • Protocol
  • First Online:
Plant Kinases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 779))

Abstract

Enzyme–substrate interactions are weak and occur only transiently and thus, a faithful analysis of these interactions typically requires elaborated biochemical methodology. The bimolecular-fluorescence complementation (BiFC) assay, also referred to as split YFP assay, is a powerful and straightforward tool to test protein–protein interactions. This system is commonly used due to many advantages and especially due to its simple ease of use. BIFC relies on the reconstitution of an N-terminal and C-terminal half of YFP into a functional, i.e., fluorescent protein. Noteworthy, the dissociation constant of the two YFP halves is much lower than the association constant leading to a stabilization of the protein–protein interaction to be monitored. Whereas this property is sometimes critical, it also increases the sensitivity of the detection system by stabilizing transient interactions. Here, we exploit this property to detect and monitor interaction between a kinase and its substrate. In particular, we characterize with the BiFC system kinase-variants that show an altered substrate binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu, H. (2004) Protein-protein interactions: methods and applications, Vol. 261, Humana Press, Totowa, N.J.

    Book  Google Scholar 

  2. Werther, M., and Seitz, H. (2008) Protein–Protein Interaction, Vol. 110, Springer-Verlag Berlin Heidelberg, Berlin, Heidelberg.

    Book  Google Scholar 

  3. Templin, M. F., Stoll, D., Schrenk, M., Traub, P. C., Vohringer, C. F., and Joos, T. O. (2002) Protein microarray technology. Trends Biotechnol20, 160–6.

    Article  CAS  Google Scholar 

  4. Zhu, H., and Snyder, M. (2003) Protein chip technology. Curr Opin Chem Biol7, 55–63.

    Article  CAS  Google Scholar 

  5. Yudushkin, I. A., Schleifenbaum, A., Kinkhabwala, A., Neel, B. G., Schultz, C., and Bastiaens, P. I. (2007) Live-cell imaging of enzyme-substrate interaction reveals spatial regulation of PTP1B. Science315, 115–9.

    Article  CAS  Google Scholar 

  6. Fields, S., and Song, O. (1989) A novel genetic system to detect protein-protein interactions. Nature340, 245–6.

    Article  CAS  Google Scholar 

  7. Causier, B., and Davies, B. (2002) Analysing protein-protein interactions with the yeast two-hybrid system. Plant Mol Biol50, 855–70.

    Article  CAS  Google Scholar 

  8. Johnsson, N., and Varshavsky, A. (1994) Split ubiquitin as a sensor of protein interactions in vivo. Proc Natl Acad Sci U S A91, 10340–4.

    Article  CAS  Google Scholar 

  9. Wittke, S., Lewke, N., Muller, S., and Johnsson, N. (1999) Probing the molecular environment of membrane proteins in vivo. Mol Biol Cell10, 2519–30.

    Article  CAS  Google Scholar 

  10. Boeke, J. D., LaCroute, F., and Fink, G. R. (1984) A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet197, 345–6.

    Article  CAS  Google Scholar 

  11. Hu, C. D., Chinenov, Y., and Kerppola, T. K. (2002) Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell9, 789–98.

    Article  CAS  Google Scholar 

  12. Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., and Kudla, J. (2004) Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J40, 428–38.

    Article  CAS  Google Scholar 

  13. Bracha-Drori, K., Shichrur, K., Katz, A., Oliva, M., Angelovici, R., Yalovsky, S., and Ohad, N. (2004) Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J40, 419–27.

    Article  CAS  Google Scholar 

  14. Hu, C. D., and Kerppola, T. K. (2003) Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat Biotechnol21, 539–45.

    Article  CAS  Google Scholar 

  15. Shyu, Y. J., Suarez, C. D., and Hu, C. D. (2008) Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nat Protoc3, 1693–702.

    Article  CAS  Google Scholar 

  16. Schütze, K., Harter, K., and Chaban, C. (2009) Bimolecular fluorescence complementation (BiFC) to study protein-protein interactions in living plant cells. Methods Mol Biol479, 189–202.

    Article  CAS  Google Scholar 

  17. Tsuchisaka, A., and Theologis, A. (2004) Heterodimeric interactions among the 1-amino-cyclopropane-1-carboxylate synthase polypeptides encoded by the Arabidopsis gene family. Proc Natl Acad Sci U S A101, 2275–80.

    Article  CAS  Google Scholar 

  18. Tsuchisaka, A., and Theologis, A. (2004) Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol136, 2982–3000.

    Article  CAS  Google Scholar 

  19. Bhat, R. A., Lahaye, T., and Panstruga, R. (2006) The visible touch: in planta visualization of protein-protein interactions by fluorophore-based methods. Plant Methods2, 12.

    Article  CAS  Google Scholar 

  20. Ubersax, J. A., Woodbury, E. L., Quang, P. N., Paraz, M., Blethrow, J. D., Shah, K., Shokat, K. M., and Morgan, D. O. (2003) Targets of the cyclin-dependent kinase Cdk1. Nature425, 859–64.

    Article  CAS  Google Scholar 

  21. Dissmeyer, N., Nowack, M. K., Pusch, S., Stals, H., Inze, D., Grini, P. E., and Schnittger, A. (2007) T-loop phosphorylation of Arabidopsis CDKA;1 is required for its function and can be partially substituted by an aspartate residue. Plant Cell19, 972–85.

    Article  CAS  Google Scholar 

  22. Dissmeyer, N., Weimer, A. K., Pusch, S., De Schutter, K., Kamei, C. L., Nowack, M. K., Novak, B., Duan, G. L., Zhu, Y. G., De Veylder, L., and Schnittger, A. (2009) Control of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 homolog CDKA;1. Plant Cell21, 3641–54.

    Article  CAS  Google Scholar 

  23. Welburn, J. P., Tucker, J. A., Johnson, T., Lindert, L., Morgan, M., Willis, A., Noble, M. E., and Endicott, J. A. (2007) How tyrosine 15 phosphorylation inhibits the activity of cyclin-dependent kinase 2-cyclin A. J Biol Chem282, 3173–81.

    Article  CAS  Google Scholar 

  24. Jakoby, M. J., Weinl, C., Pusch, S., Kuijt, S. J., Merkle, T., Dissmeyer, N., and Schnittger, A. (2006) Analysis of the Subcellular Localization, Function, and Proteolytic Control of the Arabidopsis Cyclin-Dependent Kinase Inhibitor ICK1/KRP1. Plant Physiol141, 1293–305.

    Article  CAS  Google Scholar 

  25. Feys, B. J., Wiermer, M., Bhat, R. A., Moisan, L. J., Medina-Escobar, N., Neu, C., Cabral, A., and Parker, J. E. (2005) Arabidopsis SENESCENCE-ASSOCIATED GENE101 stabilizes and signals within an ENHANCED DISEASE SUSCEPTIBILITY1 complex in plant innate immunity. Plant Cell17, 2601–13.

    Article  CAS  Google Scholar 

  26. Koncz, C., and Schell, J. (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet204, 383–396.

    Article  CAS  Google Scholar 

  27. Voinnet, O., Rivas, S., Mestre, P., and Baulcombe, D. (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J33, 949–56.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Annika K. Weimer for critical reading and comments on the manuscript and Klaus Harter and Jane Parker for sharing the plasmids. N.D. is a fellow of the International Max Planck Research School and funded by the Max Planck Society, work in the laboratory of A.S. is supported through an ATIP grant from the Centre National de la Recherche Scientifique (CNRS) and an ERC starting grant from the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nico Dissmeyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pusch, S., Dissmeyer, N., Schnittger, A. (2011). Bimolecular-Fluorescence Complementation Assay to Monitor Kinase–Substrate Interactions In Vivo. In: Dissmeyer, N., Schnittger, A. (eds) Plant Kinases. Methods in Molecular Biology, vol 779. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-61779-264-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-264-9_14

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-61779-263-2

  • Online ISBN: 978-1-61779-264-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics