Advertisement

Structural and Dynamic Characterization of Biochemical Processes by Atomic Force Microscopy

  • Frédéric Eghiaian
  • Iwan A. T. SchaapEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 778)

Abstract

Atomic Force Microscopy (AFM) has gained increasing popularity over the years among biophysicists due to its ability to image and to measure pN to nN forces on biologically relevant scales (nm to μm). Continuous technical developments have made AFM capable of nondisruptive, subsecond imaging of fragile biological samples in a liquid environment, making this method a potent alternative to light microscopy. In this chapter, we discuss the basics of AFM, its theoretical limitations, and we describe how this technique can be used to get single protein resolution in liquids at room temperature. Provided imaging is done at low-enough forces to avoid sample disruption and conformational changes, AFM allows obtaining unique insights into enzyme dynamics.

Key words

Atomic force microscopy Cantilever Thermal noise Silane Virus Microtubule Kinesin 

Notes

Acknowledgments

We thank Sebastian Hanke and Jan Knappe for performing the imaging of DNA and the thermal noise measurements, and Bodo Wilts, Christoph F. Schmidt, Pedro de Pablo, and Carolina Carrasco for useful discussions. F. Eghiaian and I.A.T Schaap are supported by the DFG Research Center for Molecular Physiology of the Brain (CMPB)/Excellence Cluster 171.

References

  1. 1.
    Binnig, G., Quate, C. F., and Gerber, C. (1985) Atomic Force Microscope, Phys. Rev. Lett. 56, 930–933.CrossRefGoogle Scholar
  2. 2.
    Martin, Y., Williams, C. C., and Wickramasinghe, H. K. (1987) Atomic force microscope–force mapping and profiling on a sub 100-Å scale, J. Appl. Phys. 61, 4723.CrossRefGoogle Scholar
  3. 3.
    Hansma, P. K., Cleveland, J. P., Radmacher, M., Walters, D. A., Hillner, P. E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B., Massie, J., Fukunaga, L., Gurley, J., and Elings, V. (1994) Tapping mode atomic force microscopy in liquids, Appl. Phys. Lett. 64, 1738–1740.CrossRefGoogle Scholar
  4. 4.
    Xu, X., Carrasco, C., de Pablo, P. J., Gomez-Herrero, J., and Raman, A. (2008) Unmasking imaging forces on soft biological samples in liquids when using dynamic atomic force microscopy: a case study on viral capsids, Biophys. J. 95, 2520–2528.Google Scholar
  5. 5.
    Schaap, I. A. T., Carrasco, C., de Pablo, P. J., MacKintosh, F. C., and Schmidt, C. F. (2006) Elastic Response, Buckling, and Instability of Microtubules under Radial Indentation, Biophys. J. 91, 1521–1531.Google Scholar
  6. 6.
    Ivanovska, I. L., de Pablo, P. J., Ibarra, B., Sgalari, G., MacKintosh, F. C., Carrascosa, J. L., Schmidt, C. F., and Wuite, G. J. L. (2004) Bacteriophage capsids: tough nanoshells with complex elastic properties, Proc. Natl. Acad. Sci. USA 101, 7600–7605.PubMedCrossRefGoogle Scholar
  7. 7.
    Goodman, R. P., Schaap, I. A. T., Tardin, C. F., Erben, C. M., Berry, R. M., Schmidt, C. F., and Turberfield, A. J. (2005) Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication, Science 310, 1661–1665.PubMedCrossRefGoogle Scholar
  8. 8.
    (2007) Cell Mechanics, Volume 83 (Methods in Cell Biology). Academic Press.Google Scholar
  9. 9.
    Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM, Science 276, 1109–1112.PubMedCrossRefGoogle Scholar
  10. 10.
    Fernandez, J. M., and Li, H. (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein, Science 303, 1674–1678.PubMedCrossRefGoogle Scholar
  11. 11.
    Florin, E. L., Moy, V. T., and Gaub, H. E. (1994) Adhesion forces between individual ligand-receptor pairs, Science 264, 415–417.PubMedCrossRefGoogle Scholar
  12. 12.
    Hinterdorfer, P., and Dufrêne, Y. F. (2006) Detection and localization of single molecular recognition events using atomic force microscopy, Nat. Methods 3, 347–355.Google Scholar
  13. 13.
    Puchner, E. M., Alexandrovich, A., Kho, A. L., Hensen, U., Schäfer, L. V., Brandmeier, B., Gräter, F., Grubmüller, H., Gaub, H. E., and Gautel, M. (2008) Mechanoenzymatics of titin kinase, Proc. Natl. Acad. Sci. USA 105, 13385–13390.PubMedCrossRefGoogle Scholar
  14. 14.
    Morris, V. J., Kirby, A. R., and Gunning, A. P. Atomic Force Microscopy For Biologists. Imperial College Press.Google Scholar
  15. 15.
    Fechner, P., Boudier, T., Mangenot, S., Jaroslawski, S., Sturgis, J. N., and Scheuring, S. (2009) Structural information, resolution, and noise in high-resolution atomic force microscopy topographs, Biophys. J 96, 3822–3831.Google Scholar
  16. 16.
    Roy, R., Hohng, S., and Ha, T. (2008) A practical guide to single-molecule FRET, Nat. Methods 5, 507–516.Google Scholar
  17. 17.
    Müller, D. J., and Engel, A. (1999) Voltage and pH-induced channel closure of porin OmpF visualized by atomic force microscopy, J. Mol. Biol 285, 1347–1351.PubMedCrossRefGoogle Scholar
  18. 18.
    Moreno-Herrero, F., de Jager, M., Dekker, N. H., Kanaar, R., Wyman, C., and Dekker, C. (2005) Mesoscale conformational changes in the DNA-repair complex Rad50/Mre11/Nbs1 upon binding DNA, Nature 437, 440–443.PubMedCrossRefGoogle Scholar
  19. 19.
    Schaap, I., Carrasco, C., de Pablo, P. J., and Schmidt, C. F. (2011) Kinesin walks the line: single motors observed by atomic force microscopy. Biophys. J. 100, 2450–2456.CrossRefGoogle Scholar
  20. 20.
    Ando, T., Kodera, N., Takai, E., Maruyama, D., Saito, K., and Toda, A. (2001) A high-speed atomic force microscope for studying biological macromolecules, Proc. Natl. Acad. Sci. USA 98, 12468–12472.PubMedCrossRefGoogle Scholar
  21. 21.
    van Noort, S. J., van Der Werf, K. O., de Grooth, B. G., and Greve, J. (1999) High speed atomic force microscopy of biomolecules by image tracking, Biophys. J. 77, 2295–2303.Google Scholar
  22. 22.
    Picco, L. M., Bozec, L., Ulcinas, A., Engledew, D., Antognozzi, M., Horton, M., and Miles, M. (2007) Breaking the speed limit with atomic force microscopy, Nanotechnology 18.Google Scholar
  23. 23.
    Fantner, G. E., Schitter, G., Kindt, J. H., Ivanov, T., Ivanova, K., Patel, R., Holten-Andersen, N., Adams, J., Thurner, P. J., Rangelow, I. W., and Hansma, P. K. (2006) Components for high speed atomic force microscopy, Ultramicroscopy 106, 881–887.PubMedCrossRefGoogle Scholar
  24. 24.
    Kodera, N., Yamamoto, D., Ishikawa, R., and Ando, T. (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468, 72–76.PubMedCrossRefGoogle Scholar
  25. 25.
    Crampton, N., Yokokawa, M., Dryden, D. T. F., Edwardson, J. M., Rao, D. N., Takeyasu, K., Yoshimura, S. H., and Henderson, R. M. (2007) Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping, Proc. Natl. Acad. Sci. USA 104, 12755–12760.PubMedCrossRefGoogle Scholar
  26. 26.
    Yokokawa, M., Wada, C., Ando, T., Sakai, N., Yagi, A., Yoshimura, S. H., and Takeyasu, K. (2006) Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL, EMBO J 25, 4567–4576.PubMedCrossRefGoogle Scholar
  27. 27.
    Radmacher, M., Fritz, M., Hansma, H. G., and Hansma, P. K. (1994) Direct observation of enzyme activity with the atomic force microscope, Science 265, 1577–1579.PubMedCrossRefGoogle Scholar
  28. 28.
    Thomson, N. H., Fritz, M., Radmacher, M., Cleveland, J. P., Schmidt, C. F., and Hansma, P. K. (1996) Protein tracking and detection of protein motion using atomic force microscopy, Biophys. J 70, 2421–2431.Google Scholar
  29. 29.
    Viani, M. B., Pietrasanta, L. I., Thompson, J. B., Chand, A., Gebeshuber, I. C., Kindt, J. H., Richter, M., Hansma, H. G., and Hansma, P. K. (2000) Probing protein–protein interactions in real time, Nat. Struct. Biol. 7, 644–647.PubMedCrossRefGoogle Scholar
  30. 30.
    Kawaguchi, K., and Ishiwata, S. (2001) Nucleotide-dependent single- to double-headed binding of kinesin, Science 291, 667–669.PubMedCrossRefGoogle Scholar
  31. 31.
    Horcas, I., Fernández, R., Gómez-Rodríguez, J. M., Colchero, J., Gómez-Herrero, J., and Baro, A. M. (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum 78, 013705.PubMedCrossRefGoogle Scholar
  32. 32.
    Williams, R. C., and Lee, J. C. (1982) Preparation of tubulin from brain, in Structural and Contractile Proteins Part B: The Contractile Apparatus and the Cytoskeleton, pp 376–385. Academic Press.Google Scholar
  33. 33.
    Carrasco, C., Carreira, A., Schaap, I. A. T., Serena, P. A., Gómez-Herrero, J., Mateu, M. G., and de Pablo, P. J. (2006) DNA-mediated anisotropic mechanical reinforcement of a virus, Proc. Natl. Acad. Sci. USA 103, 13706–13711.PubMedCrossRefGoogle Scholar
  34. 34.
    Gittes, F., and Schmidt, C. F. (1998) Signals and noise in micromechanical measurements, Methods Cell Biol. 55, 129–156.PubMedCrossRefGoogle Scholar
  35. 35.
    Viani, M. B., Schaffer, T. E., Paloczi, G. T., Pietrasanta, L. I., Smith, B. L., Thompson, J. B., Richter, M., Rief, M., Gaub, H. E., Plaxco, K. W., Cleland, A. N., Hansma, H. G., and Hansma, P. K. (1999) Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers, Rev. Sci. Instrum 70, 4300–4303.CrossRefGoogle Scholar
  36. 36.
    Hutter, J. L., and Bechhoefer, J. (1993) Calibration of atomic-force microscope tips, Rev. Sci. Instrum 64, 1868.CrossRefGoogle Scholar
  37. 37.
    Proksch, R., Schaffer, T. E., Cleveland, J. P., Callahan, R. C., and Viani, M. B. (2004) Finite optical spot size and position corrections in thermal spring constant calibration, Nanotechnology 15, 1344–1350.CrossRefGoogle Scholar
  38. 38.
    Burnham, N., Chen, X., Hodges, C., Matei, G., Thoreson, E., Roberts, C., Davies, M., and Tendler, S. (2003) Comparison of calibration methods foratomic-force microscopy cantilevers, Nanotechnology 14, 1–6.CrossRefGoogle Scholar
  39. 39.
    Sader, J. E. (1998) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, J. Appl. Phys. 84, 64–76.CrossRefGoogle Scholar
  40. 40.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) The Protein Data Bank, Nucleic Acids Res. 28, 235–242.PubMedCrossRefGoogle Scholar
  41. 41.
    Schaap, I. A. T., Hoffmann, B., Carrasco, C., Merkel, R., and Schmidt, C. F. (2007) Tau protein binding forms a 1 nm thick layer along protofilaments without affecting the radial elasticity of microtubules, J. Struct. Biol. 158, 282–292.PubMedCrossRefGoogle Scholar
  42. 42.
    Schabert, F. A., Henn, C., and Engel, A. (1995) Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy, Science 268, 92–94.PubMedCrossRefGoogle Scholar
  43. 43.
    Schaap, I. A. T., de Pablo, P. J., and Schmidt, C. F. (2004) Resolving the molecular structure of microtubules under physiological conditions with scanning force microscopy, Eur. Biophys. J. 33, 462–467.PubMedCrossRefGoogle Scholar
  44. 44.
    Snyder, J. P., Nettles, J. H., Cornett, B., Downing, K. H., and Nogales, E. (2001) The binding conformation of Taxol in beta-tubulin: a model based on electron crystallographic density, Proc. Natl. Acad. Sci. USA 98, 5312–5316.PubMedCrossRefGoogle Scholar
  45. 45.
    Graveland-Bikker, J. F., Schaap, I. A. T., Schmidt, C. F., and de Kruif, C. G. (2006) Structural and mechanical study of a self-assembling protein nanotube, Nano Lett 6, 616–621.PubMedCrossRefGoogle Scholar
  46. 46.
    Wilts, B. D., Schaap, I. A., Young, M. J., Douglas, T., Knobler, C. M., and Schmidt, C. F. (2010) Swelling and Softening of the CCMV Plant Virus Capsid in Response to pH Shifts, Biophys. J. 98, 656a.CrossRefGoogle Scholar
  47. 47.
    Li, S., Eghiaian, F., Sieben, C., Herrmann, A., and Schaap, I. A. T. (2011) Bending and puncturing the influenza lipid envelope. Biophys. J. 100, 637–645.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Drittes Physikalisches InstitutGeorg August UniversitätGöttingenGermany

Personalised recommendations