Studying Kinesin’s Enzymatic Cycle Using a Single-Motor Confocal Motility Assay, Employing Förster Resonance Energy Transfer

  • Zdenek Lansky
  • Erwin J. G. PetermanEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 778)


Kinesin is an essential eukaryotic protein that drives intracellular transport of cargo, such as vesicles and organelles. It is the smallest motor protein known that converts free energy obtained from ATP hydrolysis into mechanical work, by stepping along microtubules. The enzymatic cycle of kinesin is tightly coupled to mechanical action. How kinesin’s two identical motor domains (that both bind and hydrolyze ATP and bind to a microtubule) bring about motility has been the subject of much research. Recently, we have developed and applied a single-motor motility assay based on confocal fluorescence microscopy to measure changes in distance and orientation of the two motor domains during processive walking using Förster resonance energy transfer. The key benefit of this approach is its unprecedented time resolution of about 0.1 ms. In this chapter, we explain our approach in detailed protocols.

Key words

Kinesin FRET Single-molecule fluorescence Correlation analysis Motility assays 


  1. 1.
    Vale, R. D. (2003) The Molecular Motor Toolbox for Intracellular Transport. Cell 112, 467–480.PubMedCrossRefGoogle Scholar
  2. 2.
    Block, S. M. (2007) Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995.PubMedCrossRefGoogle Scholar
  3. 3.
    Gennerich, A., and Vale, R. D. (2009) Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67.PubMedCrossRefGoogle Scholar
  4. 4.
    Cross, R. A. (2004) The kinetic mechanism of kinesin. Trends Biochem. Sci. 29, 301–309.PubMedCrossRefGoogle Scholar
  5. 5.
    Kapitein, L. C., and Peterman, E. J. G. (2009) Single Molecule Experiments and the Kinesin Motor Protein Superfamily: Walking Hand in Hand, in Single Molecule Biology. pp 35–60, Academic Press, New York.Google Scholar
  6. 6.
    Visscher, K., Schnitzer, M. J., and Block, S. M. (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189.PubMedCrossRefGoogle Scholar
  7. 7.
    Carter, N. J., and Cross, R. A. (2005) Mechanics of the kinesin step. Nature 435, 308–312.PubMedCrossRefGoogle Scholar
  8. 8.
    Yildiz, A., Tomishige, M., Vale, R. D., and Selvin, P. R. (2004) Kinesin walks hand-over-hand. Science 303, 676–678.PubMedCrossRefGoogle Scholar
  9. 9.
    Asenjo, A. B., and Sosa, H. (2009) A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl. Acad. Sci. USA 106, 5657–5662.PubMedCrossRefGoogle Scholar
  10. 10.
    Mori, T., Vale, R. D., and Tomishige, M. (2007) How kinesin waits between steps. Nature 450, 750–U715.PubMedCrossRefGoogle Scholar
  11. 11.
    Verbrugge, S., Kapitein, L. C., and Peterman, E. J. G. (2007) Kinesin moving through the spotlight: Single-motor fluorescence microscopy with submillisecond time resolution. Biophys. J. 92, 2536–2545.PubMedCrossRefGoogle Scholar
  12. 12.
    Verbrugge, S., Lansky, Z., and Peterman, E. J. G. (2009) Kinesin’s step dissected with single-motor FRET. Proc. Natl. Acad. Sci.USA 106, 17741–17746.PubMedCrossRefGoogle Scholar
  13. 13.
    Verbrugge, S., Lechner, B., Woehlke, G., and Peterman, E. J. G. (2009) Alternating-Site Mechanism of Kinesin-1 Characterized by Single-Molecule FRET Using Fluorescent ATP Analogues. Biophys. J. 97, 173–182.PubMedCrossRefGoogle Scholar
  14. 14.
    Haustein, E., and Schwille, P. (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29, 153–166.PubMedCrossRefGoogle Scholar
  15. 15.
    Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., and Weiss, S. (1996) Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6268.PubMedCrossRefGoogle Scholar
  16. 16.
    Torres, T., and Levitus, M. (2007) Measuring conformational dynamics: A new FCS-FRET approach. J. Phys. Chem. B 111, 7392–7400.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Laboratory of Plant Cell BiologyWageningen UniversityWageningenThe Netherlands
  2. 2.Department of Physics and Astronomy and Laser CentreVU University AmsterdamAmsterdamThe Netherlands

Personalised recommendations