Skip to main content

Studying Kinesin’s Enzymatic Cycle Using a Single-Motor Confocal Motility Assay, Employing Förster Resonance Energy Transfer

  • Protocol
  • First Online:
Single Molecule Enzymology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 778))

Abstract

Kinesin is an essential eukaryotic protein that drives intracellular transport of cargo, such as vesicles and organelles. It is the smallest motor protein known that converts free energy obtained from ATP hydrolysis into mechanical work, by stepping along microtubules. The enzymatic cycle of kinesin is tightly coupled to mechanical action. How kinesin’s two identical motor domains (that both bind and hydrolyze ATP and bind to a microtubule) bring about motility has been the subject of much research. Recently, we have developed and applied a single-motor motility assay based on confocal fluorescence microscopy to measure changes in distance and orientation of the two motor domains during processive walking using Förster resonance energy transfer. The key benefit of this approach is its unprecedented time resolution of about 0.1 ms. In this chapter, we explain our approach in detailed protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vale, R. D. (2003) The Molecular Motor Toolbox for Intracellular Transport. Cell 112, 467–480.

    Article  PubMed  CAS  Google Scholar 

  2. Block, S. M. (2007) Kinesin motor mechanics: Binding, stepping, tracking, gating, and limping. Biophys. J. 92, 2986–2995.

    Article  PubMed  CAS  Google Scholar 

  3. Gennerich, A., and Vale, R. D. (2009) Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67.

    Article  PubMed  CAS  Google Scholar 

  4. Cross, R. A. (2004) The kinetic mechanism of kinesin. Trends Biochem. Sci. 29, 301–309.

    Article  PubMed  CAS  Google Scholar 

  5. Kapitein, L. C., and Peterman, E. J. G. (2009) Single Molecule Experiments and the Kinesin Motor Protein Superfamily: Walking Hand in Hand, in Single Molecule Biology. pp 35–60, Academic Press, New York.

    Google Scholar 

  6. Visscher, K., Schnitzer, M. J., and Block, S. M. (1999) Single kinesin molecules studied with a molecular force clamp. Nature 400, 184–189.

    Article  PubMed  CAS  Google Scholar 

  7. Carter, N. J., and Cross, R. A. (2005) Mechanics of the kinesin step. Nature 435, 308–312.

    Article  PubMed  CAS  Google Scholar 

  8. Yildiz, A., Tomishige, M., Vale, R. D., and Selvin, P. R. (2004) Kinesin walks hand-over-hand. Science 303, 676–678.

    Article  PubMed  CAS  Google Scholar 

  9. Asenjo, A. B., and Sosa, H. (2009) A mobile kinesin-head intermediate during the ATP-waiting state. Proc. Natl. Acad. Sci. USA 106, 5657–5662.

    Article  PubMed  CAS  Google Scholar 

  10. Mori, T., Vale, R. D., and Tomishige, M. (2007) How kinesin waits between steps. Nature 450, 750–U715.

    Article  PubMed  CAS  Google Scholar 

  11. Verbrugge, S., Kapitein, L. C., and Peterman, E. J. G. (2007) Kinesin moving through the spotlight: Single-motor fluorescence microscopy with submillisecond time resolution. Biophys. J. 92, 2536–2545.

    Article  PubMed  CAS  Google Scholar 

  12. Verbrugge, S., Lansky, Z., and Peterman, E. J. G. (2009) Kinesin’s step dissected with single-motor FRET. Proc. Natl. Acad. Sci.USA 106, 17741–17746.

    Article  PubMed  CAS  Google Scholar 

  13. Verbrugge, S., Lechner, B., Woehlke, G., and Peterman, E. J. G. (2009) Alternating-Site Mechanism of Kinesin-1 Characterized by Single-Molecule FRET Using Fluorescent ATP Analogues. Biophys. J. 97, 173–182.

    Article  PubMed  CAS  Google Scholar 

  14. Haustein, E., and Schwille, P. (2003) Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy. Methods 29, 153–166.

    Article  PubMed  CAS  Google Scholar 

  15. Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R., and Weiss, S. (1996) Probing the interaction between two single molecules: Fluorescence resonance energy transfer between a single donor and a single acceptor. Proc. Natl. Acad. Sci. USA 93, 6264–6268.

    Article  PubMed  CAS  Google Scholar 

  16. Torres, T., and Levitus, M. (2007) Measuring conformational dynamics: A new FCS-FRET approach. J. Phys. Chem. B 111, 7392–7400.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin J. G. Peterman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lansky, Z., Peterman, E.J.G. (2011). Studying Kinesin’s Enzymatic Cycle Using a Single-Motor Confocal Motility Assay, Employing Förster Resonance Energy Transfer. In: Mashanov, G., Batters, C. (eds) Single Molecule Enzymology. Methods in Molecular Biology, vol 778. Humana Press. https://doi.org/10.1007/978-1-61779-261-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-261-8_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-260-1

  • Online ISBN: 978-1-61779-261-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics