Real-Time Single-Molecule Observation of Green Fluorescent Protein Synthesis by Immobilized Ribosomes

  • Ryo Iizuka
  • Takashi Funatsu
  • Sotaro UemuraEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 778)


The dynamics of full protein synthesis and the co-translational folding processes are not fully understood. We have developed a novel method, using a combination of ribosome display and single-molecule techniques, for monitoring the synthesis, co-translational folding, and maturation of a complete polypeptide chain at the single-molecule level. This method enabled us to observe the appearance of green fluorescent protein fluorescence after de novo synthesis of the complete protein. Here, we provide the information necessary to reproduce this method, which will be valuable in revealing the dynamics of the co-translational folding and maturation of nascent polypeptides.

Key words

Ribosome display Translation Protein folding Green fluorescent protein SecM Translation arrest Single-molecule fluorescence imaging Total internal reflection fluorescence microscopy 



The authors thank Prof. Takuya Ueda and Dr. Yoshihiro Shimizu (The University of Tokyo) for the gift of plasmid pD-SecM-pURE1 and for helpful discussion, and Prof. Joseph D. Puglisi (Stanford University) for the gift of E. coli expressing C68 ribosomes.


  1. 1.
    Fedorov, A. N., and Baldwin, T. O. (1997) Cotranslational protein folding. J. Biol. Chem. 272, 32715–32718.PubMedCrossRefGoogle Scholar
  2. 2.
    Uemura, S., Iizuka, R., Ueno, T., Shimizu, Y., Taguchi, H., Ueda, T., Puglisi, J. D., and Funatsu, T. (2008) Single molecule imaging of full protein synthesis by immobilized ribosomes. Nucleic Acids Res. 36, e70.PubMedCrossRefGoogle Scholar
  3. 3.
    Nakatogawa, H., and Ito, K. (2002) The ribosomal exit tunnel functions as a discriminating gate. Cell 108, 629–636.PubMedCrossRefGoogle Scholar
  4. 4.
    Ban, N., Nissen, P., Hansen, J., Moore, P. B., and Steitz, T. A. (2000) The complete atomic structure of the large ribosomal subunit at 2.4  Å resolution. Science 289, 905–920.PubMedCrossRefGoogle Scholar
  5. 5.
    Nissen, P., Hansen, J., Ban, N., Moore, P. B., and Steitz, T. A. (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920–930.PubMedCrossRefGoogle Scholar
  6. 6.
    Yusupov, M. M., Yusupova, G. Z., Baucom, A., Lieberman, K., Earnest, T. N., Cate, J. H., and Noller, H. F. (2001) Crystal structure of the ribosome at 5.5  Å resolution. Science 292, 883–896.PubMedCrossRefGoogle Scholar
  7. 7.
    Dorywalska, M., Blanchard, S. C., Gonzalez, R. L., Kim, H. D., Chu, S., and Puglisi, J. D. (2005) Site-specific labeling of the ribosome for single-molecule spectroscopy. Nucleic Acids Res. 33, 182–189.PubMedCrossRefGoogle Scholar
  8. 8.
    Shimizu, Y., Inoue, A., Tomari, Y., Suzuki, T., Yokogawa, T., Nishikawa, K., and Ueda, T. (2001) Cell-free translation reconstituted with purified components. Nat. Biotechnol. 19, 751–755.PubMedCrossRefGoogle Scholar
  9. 9.
    Shimizu, Y., Kanamori, T., and Ueda, T. (2005) Protein synthesis by pure translation systems. Methods 36, 299–304.PubMedCrossRefGoogle Scholar
  10. 10.
    Kolb, V. A., Makeyev, E. V., Ward, W. W., and Spirin, A. S. (1996) Synthesis and maturation of green fluorescent protein in a cell-free translation. Biotechnol. Lett. 18, 1447–1452.CrossRefGoogle Scholar
  11. 11.
    Jermutus, L., Kolly, R., Földes-Papp, Z., Hanes, J., Rigler, R., and Plückthun, A. (2002) Ligand binding of a ribosome-displayed protein detected in solution at the single molecule level by fluorescence correlation spectroscopy. Eur. Biophys. J. 31, 179–184.PubMedCrossRefGoogle Scholar
  12. 12.
    Ito, Y., Suzuki, M., and Husimi, Y. (1999) A novel mutant of green fluorescent protein with enhanced sensitivity for microanalysis at 488 nm excitation. Biochem. Biophys. Res. Commun. 264, 556–560.PubMedCrossRefGoogle Scholar
  13. 13.
    Patterson, G. H., Knobel, S. M., Sharif, W. D., Kain, S. R., and Piston, D. W. (1997) Use of the green fluorescent protein and its mutants in quantitative fluorescence microscopy. Biophys. J. 73, 2782–2790.PubMedCrossRefGoogle Scholar
  14. 14.
    Crameri, A., Whitehorn, E. A., Tate, E., and Stemmer, W. P. (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319.PubMedCrossRefGoogle Scholar
  15. 15.
    Matsuura, T., and Plückthun, A. (2003) Selection based on the folding properties of proteins with ribosome display. FEBS Lett. 539, 24–28.PubMedCrossRefGoogle Scholar
  16. 16.
    Matsuura, T., Yanagida, H., Ushioda, J., Urabe, I., and Yomo, T. (2007) Nascent chain, mRNA, and ribosome complexes generated by a pure translation system. Biochem. Biophys. Res. Commun. 352, 372–377.PubMedCrossRefGoogle Scholar
  17. 17.
    Evans, M. S., Ugrinov, K. G., Frese, M. A., and Clark, P. L. (2005) Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro. Nat. Methods 2, 757–762.PubMedCrossRefGoogle Scholar
  18. 18.
    Muto, H., Nakatogawa, H., and Ito, K. (2006) Genetically encoded but nonpolypeptide ­prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Mol. Cell 22, 545–552.PubMedCrossRefGoogle Scholar
  19. 19.
    Ohashi, H., Shimizu, Y., Ying, B. W., and Ueda, T. (2007) Efficient protein selection based on ribosome display system with purified components. Biochem. Biophys. Res. Commun. 352, 270–276.PubMedCrossRefGoogle Scholar
  20. 20.
    Hayes, C. S., Bose, B., and Sauer, R. T. (2002) Proline residues at the C-terminus of nascent chains induce SsrA-tagging during transla­tion termination. J. Biol. Chem. 277, 33825–33832.PubMedCrossRefGoogle Scholar
  21. 21.
    Hayes, C. S., and Sauer, R. T. (2003) Cleavage of the A site mRNA codon during ribosome pausing provides a mechanism for translational quality control. Mol. Cell 12, 903–911.PubMedCrossRefGoogle Scholar
  22. 22.
    Powers, T., and Noller, H. F. (1991) A functional pseudoknot in 16S ribosomal RNA. EMBO J. 10, 2203–2214.PubMedGoogle Scholar
  23. 23.
    Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., and Prasher, D. C. (1994) Green fluorescent protein as a marker for gene expression. Science 263, 802–805.PubMedCrossRefGoogle Scholar
  24. 24.
    Forrer, P., and Jaussi, R. (1998) High-level expression of soluble heterologous proteins in the cytoplasm of Escherichia coli by fusion to the bacteriophage lambda head protein D. Gene 224, 45–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Yang, F., Forrer, P., Dauter, Z., Conway, J. F., Cheng, N., Cerritelli, M. E., Steven, A. C., Plückthun, A., and Wlodawer, A. (2000) Novel fold and capsid-binding properties of the λ-phage display platform protein gpD. Nat. Struct. Biol. 7, 230–237.PubMedCrossRefGoogle Scholar
  26. 26.
    Olins, P. O., and Rangwala, S. H. (1989) A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. J. Biol. Chem. 264, 16973–16976.PubMedGoogle Scholar
  27. 27.
    Selvin, P. R., and Ha, T. (2007) Single-Molecule Techniques. Cold Spring Harbor Laboratory Press, NY.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesUniversity of TokyoTokyoJapan
  2. 2.Omics Science Center, RIKEN Yokohama InstituteYokohamaJapan

Personalised recommendations