Skip to main content

Methodology to Investigate Androgen-Sensitive and Castration-Resistant Human Prostate Cancer Xenografts in Preclinical Setting

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 776))

Abstract

Understanding the biology of prostate cancer and the roles of androgen receptor in prostate cancer progression is essential to the development of novel therapeutic strategies to effectively attack and eradicate this disease. Preclinical, in vivo, studies are critical to further evaluate potential clinical relevance of in vitro findings. Ideally, in vivo studies should employ models that mimic characteristics of prostate cancer from early diagnosis through the period of castration-resistant metastases. In this chapter we describe methodologies used to grow human prostate cancer xenografts in mice. In this setting, roles of androgen receptor signaling in prostate cancer progression and efficacy of novel treatment modalities, including those affecting androgen receptor signaling, can be investigated.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Culig Z, Klocker H, Bartsch G, Steiner H, Hobisch A. (2003) Androgen receptors in prostate cancer. J. Urol. 170, 1363–1369.

    Article  PubMed  CAS  Google Scholar 

  2. Danielpour D. (2005) Functions and regulation of transforming growth factor-beta (TGF-beta) in the prostate. Eur. J. Cancer 41, 846–857.

    Article  PubMed  CAS  Google Scholar 

  3. Quinn DI, Henshall SM, Sutherland RL. (2005) Molecular markers of prostate cancer outcome. Eur. J. Cancer 41, 858–887.

    Article  PubMed  CAS  Google Scholar 

  4. Burd CJ, Morey LM, Knudsen KE. (2006) Androgen receptor corepressors and prostate cancer. Endocr. Relat Cancer 13, 979–994.

    Article  PubMed  CAS  Google Scholar 

  5. Chatterjee B. (2003) The role of the androgen receptor in the development of prostatic hyperplasia and prostate cancer. Mol. Cell Biochem. 253, 89–101.

    Article  PubMed  CAS  Google Scholar 

  6. Brubaker KD, Brown LG, Vessella RL, Corey E. (2006) Administration of zoledronic acid enhances the effects of docetaxel on growth of prostate cancer in the bone environment. BMC Cancer 6, 15.

    Article  PubMed  CAS  Google Scholar 

  7. Horoszewicz JS, Leong SS, Kawinski E, Karr J, Rosenthal H, Chr TM, et al. (1983) LNCaP model of human prostatic carcinoma. Cancer Res. 43, 1809–1818.

    PubMed  CAS  Google Scholar 

  8. Thalmann GN, Anezinis PE, Chang S, Zhau HE, Kim EE, Hopwood VL, et al. (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res. 54, 2577–2581.

    PubMed  CAS  Google Scholar 

  9. Thalmann GN, Sikes RA, Wu TT, Degeorges A, Chang SM, Ozen M, et al. (2000) LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate 44, 91–103.

    Article  PubMed  CAS  Google Scholar 

  10. Wu TT, Sikes RA, Cui Q, Thalmann GN, Kao C, Murphy CF, et al. (1998) Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen- producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Int. J. Cancer 77, 887–894.

    Article  PubMed  CAS  Google Scholar 

  11. Korenchuk S, Lehr JE, MClean L, Lee YG, Whitney S, Vessella R, et al. (2001) VCaP, a cell-based model system of human prostate cancer. In Vivo 15, 163–168.

    PubMed  CAS  Google Scholar 

  12. Lee YG, Korenchuk S, Lehr J, Whitney S, Vessela R, Pienta KJ. (2001) Establishment and characterization of a new human prostatic cancer cell line: DuCaP. In Vivo 15, 157–162.

    PubMed  CAS  Google Scholar 

  13. Terry S, Yang X, Chen MW, Vacherot F, Buttyan R. (2006) Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer. J. Cell Biochem. 99, 402–410.

    Article  PubMed  CAS  Google Scholar 

  14. Wainstein MA, He F, Robinson D, Kung HJ, Schwartz S, Giaconia JM, et al. (1994) CWR22: Androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 54, 6049–6052.

    PubMed  CAS  Google Scholar 

  15. Nagabhushan M, Miller CM, Pretlow TP, Giaconia JM, Edgehouse NL, Schwartz S, et al. (1996) CWR22: The first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res. 56, 3042–3046.

    PubMed  CAS  Google Scholar 

  16. Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, Lee LF, et al. (2002) Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res. 62, 6606–6614.

    PubMed  CAS  Google Scholar 

  17. Navone NM, Olive M, Ozen M, Davis R, Troncoso P, Tu SM, et al. (1997) Establishment of two human prostate cancer cell lines derived from a single bone metastasis. Clin. Cancer Res. 3, 2493–2500.

    PubMed  CAS  Google Scholar 

  18. Hara T, Nakamura K, Araki H, Kusaka M, Yamaoka M. (2003) Enhanced androgen receptor signaling correlates with the androgen-refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline. Cancer Res. 63, 5622–5628.

    PubMed  CAS  Google Scholar 

  19. Harper ME, Goddard L, Smith C, Nicholson RI. (2004) Characterization of a transplantable hormone-responsive human prostatic cancer xenograft TEN12 and its androgen-resistant sublines. Prostate 58, 13–22.

    Article  PubMed  Google Scholar 

  20. McCulloch DR, Opeskin K, Thompson EW, Williams ED. (2005) BM18: A novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis. Prostate 65, 35–43.

    Google Scholar 

  21. Klein KA, Reiter RE, Redula J, Moradi H, Zhu XL, Brothman AR, et al. (1997) Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat. Med. 3, 402–408.

    Article  PubMed  CAS  Google Scholar 

  22. Davies MR, Lee YP, Lee C, Zhang X, Afar DE, Lieberman JR. (2003) Use of a SCID mouse model to select for a more aggressive strain of prostate cancer. Anticancer Res. 23, 2245–2252.

    PubMed  Google Scholar 

  23. Craft N, Chhor C, Tran C, Belldegrun A, deKernion J, Witte ON, et al. (1999) Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res. 59, 5030–5036.

    PubMed  CAS  Google Scholar 

  24. Ellis WJ, Vessella RL, Buhler KR, Bladou F, True LD, Bigler SA, et al. (1996) Characterization of a novel androgen-sensitive, prostate-specific antigen-producing prostatic carcinoma xenograft: LuCaP 23. Clin. Cancer Res. 2, 1039–1048.

    PubMed  CAS  Google Scholar 

  25. Corey E, Quinn JE, Buhler KR, Nelson PS, Macoska JA, True LD, et al. (2003) LuCaP 35: A New Model of Prostate Cancer Progression to Androgen Independence. Prostate 55, 239–246.

    Article  PubMed  CAS  Google Scholar 

  26. Corey E, Vessella RL. Xenograft models of human prostate cancer. In: Chung LWK, Isaacs WB, Simons JW, editors, Prostate Cancer: biology, genetics and the new therapeutics. Totowa, NJ: Humana Press; 2007, Second Edition, Chapter 1, pp. 3–32.

    Google Scholar 

  27. Snoek R, Cheng H, Margiotti K, Wafa LA, Wong CA, Wong EC, et al. (2009) In vivo knockdown of the androgen receptor results in growth inhibition and regression of well-established, castration-resistant prostate tumors. Clin. Cancer Res. 15, 39–47.

    Article  PubMed  CAS  Google Scholar 

  28. Coleman IM, Kiefer JA, Brown LG, Pitts TE, Nelson PS, Brubaker KD, et al. (2006) Inhibition of androgen-independent prostate cancer by estrogenic compounds is associated with increased expression of immune-related genes. Neoplasia 8, 862–878.

    Article  PubMed  CAS  Google Scholar 

  29. Wu JD, Odman A, Higgins LM, Haugk K, Vessella R, Ludwig DL, et al. (2005) In vivo effects of the human type i insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clin. Cancer Res. 11, 3065–3074.

    Article  PubMed  CAS  Google Scholar 

  30. Kiefer JA, Vessella RL, Quinn JE, Odman AM, Zhang J, Keller ET, et al. (2004) The effect of osteoprotegerin administration on the intra-tibial growth of the osteoblastic LuCaP 23.1 prostate cancer xenograft. Clin. Exp. Metastasis 21, 381–387.

    Article  PubMed  CAS  Google Scholar 

  31. Trauger R, Corey E, Bell D, White S, Garsd A, Stickney D, et al. (2009) Inhibition of androstenediol-dependent LNCaP tumour growth by 17alpha-ethynyl-5alpha-androstane-3alpha, 17beta-diol (HE3235). Br. J. Cancer 100, 1068–1072.

    Article  PubMed  CAS  Google Scholar 

  32. Corey E, Brown LG, Quinn JE, Poot M, Roudier M.P, Higano CS, et al. (2003) Zoledronic acid exhibits inhibitory effects on osteoblastic and osteolytic metastases of prostate cancer. Clin. Cancer Res 9, 295–306.

    PubMed  CAS  Google Scholar 

  33. Corey E, Quinn JE, Emond MJ, Buhler KR, Brown LG, Vessella RL. (2002) Inhibition of androgen-independent growth of prostate cancer xenografts by 17 beta-estradiol. Clin. Cancer Res 8, 1003–1007.

    PubMed  CAS  Google Scholar 

  34. Wang Y, Xue H, Cutz JC, Bayani J, Mawji NR, Chen WG, et al. (2005) An orthotopic metastatic prostate cancer model in SCID mice via grafting of a transplantable human prostate tumor line. Lab Invest 85, 1392–1404.

    Article  PubMed  Google Scholar 

  35. Rubin MA, Putzi M, Mucci N, Smith DC, Wojno K, Korenchuk S, et al. (2000) Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clin Cancer Res 2000. Mar 6(3), 1038–1045.

    CAS  Google Scholar 

  36. Bubendorf L, Schopfer A, Wagner U, Sauter G, Moch H, Willi N, et al. (2000) Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum. Pathol. 31, 578–583.

    Article  PubMed  CAS  Google Scholar 

  37. Harada M, Iida M, Yamaguchi M, Shida K. (1992) Analysis of bone metastasis of prostatic adenocarcinoma in 137 autopsy cases. Adv. Exp. Med. Biol. 324, P173–182.

    PubMed  CAS  Google Scholar 

  38. Saitoh H, Hida M, Shimbo T, Nakamura K, Yamagata J, Satoh T. (1984) Metastatic patterns of prostatic cancer. Correlation between sites and number of organs involved. Cancer 54, 3078–3084.

    Article  PubMed  CAS  Google Scholar 

  39. Roudier MP, Vesselle H, True LD, Higano CS, Ott SM, King SH, et al. (2003) Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Clin. Exp. Metastasis 20, 171–180.

    Article  PubMed  CAS  Google Scholar 

  40. Roudier MP, Corey E, True LD, Higano CS, Ott SM, Vessella RL. Histological, immunological and histomorphometrical characterization of prostate cancer bone metastases. In: Keller ET, Chung LWK, editors. The biology of skeletel metastases. Boston, MA: Kluwer; 2004, pp. 311–339.

    Google Scholar 

  41. Roudier MP, True LD, Higano CS, Vesselle H, Ellis W.J., Lange PH, et al. (2003) Phenotypic Heterogeneity of Androgen-Independent Prostate Cancer Bone Metastases. Hum. Pathol. 34, 646–653.

    Article  PubMed  Google Scholar 

  42. Nemeth JA, Harb JF, Barroso UJ, He Z, Grignon DJ, Cher ML. (1999) Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Cancer Res. 59, 1987–1993.

    PubMed  CAS  Google Scholar 

  43. Brown LG, Vessella RL, Corey E. (2000) Effects of zoledronc acid on prostate cancer cells. J Bone Miner. Res. 15, S446.

    Google Scholar 

  44. Corey E, Quinn JE, Bladou F, Brown LG, Roudier MP, Brown JM, et al. (2002) Establishment and characterization of osseous prostate cancer models: intra-tibial injection of human prostate cancer cells. Prostate 52, 20–33.

    Article  PubMed  Google Scholar 

  45. Koreckij TD, Trauger RJ, Montgomery RB, Pitts TE, Coleman I, Nguyen H, et al. (2009) HE3235 inhibits growth of castration-resistant prostate cancer. Neoplasia. 11, 1216–1225.

    PubMed  CAS  Google Scholar 

  46. Morgan TM, Pitts TE, Gross TS, Poliachik SL, Vessella RL, Corey E. (2008) RAD001 (Everolimus) inhibits growth of prostate cancer in the bone and the inhibitory effects are increased by combination with docetaxel and zoledronic acid. Prostate 68, 861–871.

    Article  PubMed  CAS  Google Scholar 

  47. Pfitzenmaier J, Quinn JE, Odman AM, Zhang J, Keller ET, Vessella RL, et al. (2003) Characterization of C4-2 prostate cancer bone metastases and their response to castration. J. Bone Miner. Res. 18, 1882–1888.

    Article  PubMed  CAS  Google Scholar 

  48. Kundra V, Ng CS, Ma J, Bankson JA, Price RE, Cody DD, et al. (2007) In vivo imaging of prostate cancer involving bone in a mouse model. Prostate 67, 50–60.

    Article  PubMed  Google Scholar 

  49. Lu Y, Cai Z, Xiao G, Keller ET, Mizokami A, Yao Z, et al. (2007) Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res. 67, 3646–3653.

    Article  PubMed  CAS  Google Scholar 

  50. Zhang J, Dai J, Qi Y, Lin DL, Smith P, Strayhorn C, et al. (2001) Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin. Invest. 107, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  51. Koreckij T, Nguyen H, Brown LG, Yu EY, Vessella RL, Corey E. (2009) Dasatinib inhibits the growth of prostate cancer in bone and provides additional protection from osteolysis. Br. J. Cancer 101, 263–268.

    Article  PubMed  CAS  Google Scholar 

  52. Morrissey C, Brown LG, Pitts TE, Vessella RL, Corey E. (2010) Bone morphogenetic protein 7 is expressed in prostate cancer metastases and its effects on prostate tumor cells depend on cell phenotype and the tumor microenvironment. Neoplasia 12, 192–205.

    PubMed  CAS  Google Scholar 

  53. Morrissey C, Kostenuik PJ, Brown LG, Vessella RL, Corey E. (2007) Host-derived RANKL is responsible for osteolysis in a C4-2 human prostate cancer xenograft model of experimental bone metastases. BMC Cancer 7, 148.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Richard M. Lucas Foundation and the Prostate Cancer Foundation for long-term support for generation and characterization of our prostate cancer xenograft lines. We would also like to thank Dr. Vessella, the Director of the GU Cancer Research Laboratory in the Department of Urology at the University of Washington, for his continuous support of our work. Our preclinical and biological studies have been supported over the years by NIH grants 5-P50-DK47656, 5-PO1-CA085859, 5-50-CA97186. Finally, we would like to acknowledge Abbott Laboratories for their generous support throughout the years by providing reagents for the quantification of PSA levels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Corey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nguyen, H.M., Corey, E. (2011). Methodology to Investigate Androgen-Sensitive and Castration-Resistant Human Prostate Cancer Xenografts in Preclinical Setting. In: Saatcioglu, F. (eds) Androgen Action. Methods in Molecular Biology, vol 776. Humana Press. https://doi.org/10.1007/978-1-61779-243-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-243-4_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-242-7

  • Online ISBN: 978-1-61779-243-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics