Skip to main content

Studying Chloroplast Protein Interactions In Vitro: An Overview of the Available Methods

  • Protocol
  • First Online:
Chloroplast Research in Arabidopsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 775))

  • 2783 Accesses

Abstract

The analysis of protein–protein interactions is essential for the understanding of the molecular events in enzymatic pathways, signaling cascades, or transport processes in the chloroplast. A large variety of methods are available, which range from qualitative assays allowing for screening for new interaction partners, and semiquantitative assays allowing for a rough description of the interaction between two partners, to quantitative assays that permit detailed determination of kinetic and thermodynamic parameters. We summarize the available technologies, describe their range of applications and pitfalls, and give some examples from chloroplast research. The described techniques are generic and thereby important and useful to study the interaction network of proteins in Arabidopsis thaliana. In addition, we refer the reader to detailed protocols published elsewhere for each method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chou, M.-L., Chu, C.-C., Chen, L. J., Akita, M., and Li, H.-M. (2006) Stimulation of transit-peptide release and ATP hydrolysis by a cochaperone during protein import into chloroplasts. J. Cell Biol. 175, 893–900.

    Article  PubMed  CAS  Google Scholar 

  2. Bédard J, Kubis S, Bimanadham S, and Jarvis P. (2007) Functional similarity between the chloroplast translocon component, Tic40, and the human co-chaperone, Hsp70-interacting protein (Hip). J. Biol. Chem. 282, 21404–21414.

    Article  PubMed  Google Scholar 

  3. Pasch, J. P., Nickelsen, J., and Schünemann, D. (2005) The yeast split-ubiquitin system to study chloroplast membrane protein interactions. Appl. Microbiol. Biotechnol. 69, 440–447.

    Article  PubMed  CAS  Google Scholar 

  4. Sprinzak, E., Sattath, S., and Margalit, H. (2003) How reliable are experimental protein-protein interaction data? J. Mol. Biol. 327, 919–923.

    Article  PubMed  CAS  Google Scholar 

  5. Maple, J., and Møller, S. G. (2007) Yeast two-hybrid screening. Methods Mol. Biol. 362, 207–223.

    Article  CAS  Google Scholar 

  6. Garcia-Cuellar, M. P., Mederer, D., and Slany, R. K. (2009) Identification of protein interaction partners by the yeast two-hybrid system. Methods Mol. Biol. 538, 347–367.

    Article  PubMed  CAS  Google Scholar 

  7. Kittanakom, S., Chuk, M., Wong, V., Snyder, J., Edmonds, D., Lydakis, A., Zhang, Z., Auerbach, D., and Stagljar, I. (2009) Analysis of membrane protein complexes using the split-ubiquitin membrane yeast two-hybrid (MYTH) system. Methods Mol. Biol. 548, 247–271.

    Article  PubMed  CAS  Google Scholar 

  8. Stagljar, I., and Fields, S. (2002) Analysis of membrane protein interactions using yeast-based technologies. Trends Biochem. Sci. 27, 559–563.

    Article  PubMed  CAS  Google Scholar 

  9. Rahim, G., Bischof, S., Kessler, F., and Agne, B. (2009) In vivo interaction between atToc33 and atToc159 GTP-binding domains demonstrated in a plant split-ubiquitin system. J. Exp. Bot. 60, 257–267.

    Article  PubMed  CAS  Google Scholar 

  10. Brymora, A., Valova. V. A., and Robinson, P. J. (2004) Protein-protein interactions identified by pull-down experiments and mass spectrometry. Curr. Protoc. Cell Biol. 22, 17.5.1–17.5.51.

    Google Scholar 

  11. Kaboord, B. and Perr, M. (2008) Isolation of proteins and protein complexes by immunoprecipitation. Methods Mol. Biol. 424, 349–364.

    Article  PubMed  CAS  Google Scholar 

  12. Firestone, G. L., and Winguth, S. D. (1990) Immunoprecipitation of proteins. Methods Enzymol. 182, 688–700.

    Article  CAS  Google Scholar 

  13. Swaffield, J. C., and Johnston, S. A. (1996) affinity purification of proteins binding to GST fusion proteins. Curr. Protoc. Mol. Biol. 33, 20.2.1–20.2.10.

    Google Scholar 

  14. Ren, L., Emery, D., Kaboord, B., Chang, E., and Qoronfleh, M. W. (2003) Improved immunomatrix methods to detect protein:protein interactions. J. Biochem. Biophys. Methods 57, 143–157.

    Article  PubMed  CAS  Google Scholar 

  15. Nielsen, E., M. Akita, J. Davila-Aponte, and K. Keegstra (1997) Stable association of chloroplastic precursors with protein-translocation complexes that contain proteins from both envelope membranes and a stromal Hsp100 molecular chaperone. EMBO J. 16, 935–946.

    Article  PubMed  CAS  Google Scholar 

  16. Kouranov, A., Chen, X., Fuks, B., and Schnell, D.J. (1998) Tic20 and Tic22 are new components of the protein import apparatus at the chloroplast inner envelope membrane. J. Cell Biol. 143, 991–1002.

    Article  PubMed  CAS  Google Scholar 

  17. Becker, T., Jelic, M., Vojta, A., Radunz, A., Soll, J., and Schleiff E (2004) Preprotein recognition by the Toc complex. EMBO J. 23, 520–530.

    Article  PubMed  CAS  Google Scholar 

  18. May, T., and Soll, J. (2000) 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12, 53–64.

    PubMed  CAS  Google Scholar 

  19. Qbadou, S., Becker, T., Mirus, O., Tews, I., Soll, J., and Schleiff, E. (2006) The molecular chaperone Hsp90 delivers precursor proteins to the chloroplast import receptor Toc64. EMBO J. 25, 18361847.

    Article  PubMed  CAS  Google Scholar 

  20. Ivanova, Y., Smith, M. D., Chen, K., and Schnell, D. J. (2004) Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol. Biol. Cell. 15, 3379–3392.

    Article  PubMed  CAS  Google Scholar 

  21. Smith, M. D., Hiltbrunner, A., Kessler, F., and Schnell, D. J. (2002) The targeting of the atToc159 preprotein receptor to the chloroplast outer membrane is mediated by its GTPase domain and is regulated by GTP. J. Cell Biol. 159, 833–843.

    Article  PubMed  CAS  Google Scholar 

  22. Inaba, T., Li, M., Alvarez-Huerta, M., Kessler, F., and Schnell, D. J. (2003) atTic110 functions as a scaffold for coordinating the stromal events of protein import into chloroplasts. J. Biol. Chem. 278, 38617–38627.

    Article  PubMed  CAS  Google Scholar 

  23. Smith, M. D., Rounds, C. M., Wang, F., Chen, K., Afitlhile, M., and Schnell, D.J. (2004). atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J. Cell Biol. 165, 323334.

    Article  PubMed  CAS  Google Scholar 

  24. Inaba, T., Alvarez-Huerta, M. Li, M., Bauer, J., Ewers, C., Kessler, F., and Schnell, D. J. (2005) Arabidopsis tic110 is essential for the assembly and function of the protein import machinery of plastids. Plant Cell 17, 1482–1496.

    Article  PubMed  CAS  Google Scholar 

  25. Schleiff, E., Motzkus, M., and Soll, J. (2002) Chloroplast protein import inhibition by a soluble factor from wheat germ lysate. Plant Mol. Biol. 50, 177–185.

    Article  PubMed  CAS  Google Scholar 

  26. Bauer, J., Hiltbrunner, A., Weibel, P., Vidi, P. A., Alvarez-Huerta, M., Smith, M. D., Schnell, D. J., and Kessler, F. (2002) Essential role of the G-domain in targeting of the protein import receptor atToc159 to the chloroplast outer membrane. J. Cell Biol. 159, 845–854.

    Article  PubMed  CAS  Google Scholar 

  27. Wallas, T. R., Smith, M. D., Sanchez-Nieto, S., and Schnell, D. J. (2003) The roles of toc34 and toc75 in targeting the toc159 preprotein receptor to chloroplasts. J. Biol. Chem. 278, 44289–44297.

    Article  PubMed  CAS  Google Scholar 

  28. Reineke, U., Sabat, R., Kramer, A., Stigler, R. D., Seifert, M., Michel, T., Volk, H. D., and Schneider-Mergener, J. (1996) Mapping protein-protein contact sites using cellulose-bound peptide scans. Mol. Divers. 1, 141–148.

    Article  PubMed  CAS  Google Scholar 

  29. Rüdiger, S., Germeroth, L., Schneider-Mergener, J., and Bukau, B. (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J. 16,1501–1507.

    Article  PubMed  Google Scholar 

  30. Koenig, P., Oreb, M., Höfle, A., Kaltofen, S., Rippe, K., Sinning, I., Schleiff, E., and Tews, I. (2008) The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures. Structure 16, 585–596.

    Article  PubMed  CAS  Google Scholar 

  31. Oreb, M., Höfle, A., Mirus, O., and Schleiff, E. (2008) Phosphorylation regulates the assembly of chloroplast import machinery. J. Exp. Bot. 59, 2309–2316.

    Article  PubMed  CAS  Google Scholar 

  32. Schmidt von Braun, S., and Schleiff, E. (2008) The chloroplast outer membrane protein CHUP1 interacts with actin and profilin. Planta 227, 1151–1159.

    Article  PubMed  CAS  Google Scholar 

  33. Cregg, J. M., Tolstorukov, I., Kusari, A., Sunga, J., Madden, K., and Chappell, T. (2009) Expression in the yeast Pichia pastoris. Methods Enzymol. 463, 169–189.

    Article  PubMed  CAS  Google Scholar 

  34. Jarvis, D. L. (2009) Baculovirus-insect cell expression systems. Methods Enzymol. 463, 191–222.

    CAS  Google Scholar 

  35. Qbadou, S., Becker, T., Bionda, T., Reger, K., Ruprecht, M., Soll, J., and Schleiff, E. (2007) Toc64-a preprotein-receptor at the outer membrane with bipartide function. J. Mol. Biol. 367, 1330–1346.

    Article  PubMed  CAS  Google Scholar 

  36. Dowler S, Kular G, and Alessi DR. (2002) Protein lipid overlay assay. Sci STKE 129, pl6.

    Google Scholar 

  37. Wunder T, Martin R, Löffelhardt W, Schleiff E, and Steiner JM. (2007) The invariant phenylalanine of precursor proteins discloses the importance of Omp85 for protein translocation into cyanelles. BMC Evol. Biol. 7, 236.

    Article  PubMed  Google Scholar 

  38. Beattie J. (1998) Size-exclusion chromatography. Identification of interacting proteins. Methods Mol. Biol. 88, 65–69.

    CAS  Google Scholar 

  39. Irvine, G. B. (2000) Determination of molecular size by size-exclusion chromatography (gel filtration). Curr. Protoc. Cell Biol. 6, 5.5.1–5.5.16.

    Google Scholar 

  40. Folta-Stogniew, E. (2006) Oligomeric states of proteins determined by size-exclusion chromatography coupled with light scattering, absorbance, and refractive index detectors. Methods Mol. Biol. 328, 97–112.

    PubMed  CAS  Google Scholar 

  41. Yeh, Y. H., Kesavulu, M. M., Li, H. M., Wu, S. Z., Sun, Y. J., Konozy, E. H., and Hsiao, C. D. (2007) Dimerization is important for the GTPase activity of chloroplast translocon components atToc33 and psToc159. J. Biol. Chem. 282, 13845–13853.

    Article  PubMed  CAS  Google Scholar 

  42. Koenig, P., Oreb, M., Rippe, K., Muhle-Goll, C., Sinning, I., Schleiff, E., and Tews, I. (2008) On the significance of Toc-GTPase homodimers. J. Biol. Chem. 283, 23104–23112.

    Article  PubMed  CAS  Google Scholar 

  43. Bionda, T., Koenig, P., Oreb, M., Tews, I., and Schleiff, E. (2008) pH sensitivity of the GTPase Toc33 as a regulatory circuit for protein translocation into chloroplasts. Plant Cell Physiol. 49, 1917–1921.

    Article  PubMed  CAS  Google Scholar 

  44. Falk, S., Ravaud, S., Koch, J., and Sinning, I. (2010) The C terminus of the Alb3 membrane insertase recruits cpSRP43 to the thylakoid membrane. J. Biol. Chem. 285, 5954–5962.

    Article  PubMed  CAS  Google Scholar 

  45. Schleiff, E., Soll, J., Küchler, M., Kühlbrandt, W., and Harrer, R. (2003) Characterization of the translocon of the outer envelope of chloroplasts. J. Cell Biol. 160, 541–551.

    Article  PubMed  CAS  Google Scholar 

  46. Scott, D. J., Harding, S. E., and Rowe, A. J. (2005) Analytical Ultracentrifugation: Techniques and Methods. Royal Society of Chemistry, Cambridge, UK.

    Book  Google Scholar 

  47. Brown, P. H., Balbo, A., and Schuck, P. (2008) Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. Curr. Protoc. Immunol. 81, 18.15.1–18.15.39.

    Google Scholar 

  48. Dam, J., and Schuck, P. (2004) Calculating sedimentation coefficient distributions by direct modeling of sedimentation velocity concentration profiles. Methods Enzymol. 384, 185–212.

    Article  PubMed  CAS  Google Scholar 

  49. Lebowitz, J., Lewis, M. S., and Schuck, P. (2002) Modern analytical ultracentrifugation in protein science: a tutorial review. Protein Sci. 11, 2067–2079.

    Article  PubMed  CAS  Google Scholar 

  50. Reddick, L. E., Vaughn, M. D., Wright, S. J., Campbell, I. M , and Bruce, B. D. (2007) In vitro comparative kinetic analysis of the chloroplast Toc GTPases. J. Biol. Chem. 282, 11410–11426.

    Article  PubMed  CAS  Google Scholar 

  51. Schuck, P. (2003) On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation. Anal. Biochem. 320, 104–124.

    Article  PubMed  CAS  Google Scholar 

  52. Fleming, K. G. (2008) Determination of membrane protein molecular weight using sedimentation equilibrium analytical ultracentrifugation. Curr. Protoc. Protein Sci. 53, 7.12.1–7.12.13.

    Google Scholar 

  53. Spolar, R. S., and Record, M. T. Jr. (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263, 777–784.

    Article  PubMed  CAS  Google Scholar 

  54. Velázquez-Campoy, A., Ohtaka, H., Nezami, A., Muzammil, S., and Freire, E. (2004) Isothermal titration calorimetry. Curr. Protoc. Cell Biol. 23, 17.8.1–17.8.24.

    Google Scholar 

  55. Freyer, M. W., and Lewis, E. A. (2008) Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods Cell Biol. 84, 79–113.

    Article  PubMed  CAS  Google Scholar 

  56. Velazquez-Campoy, A., and Freire, E. (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat. Protoc. 1, 186–191.

    Article  PubMed  CAS  Google Scholar 

  57. Sivaraja, V., Kumar, T. K., Leena, P. S., Chang, A. N., Vidya, C., Goforth, R. L., Rajalingam, D., Arvind, K., Ye, J. L., Chou, J., Henry, R., and Yu, C. (2005) Three-dimensional solution structures of the chromodomains of cpSRP43. J. Biol. Chem. 280, 41465–41471.

    Article  PubMed  CAS  Google Scholar 

  58. Kathir, K. M., Rajalingam, D., Sivaraja, V., Kight, A., Goforth, R. L., Yu, C., Henry, R., and Kumar, T. K. (2008) Assembly of chloroplast signal recognition particle involves structural rearrangement in cpSRP43. J. Mol. Biol. 381, 49–60.

    Article  PubMed  CAS  Google Scholar 

  59. Stengel, K. F., Holdermann, I., Cain, P., Robinson, C., Wild, K., and Sinning, I. (2008) Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43. Science. 321, 253–256.

    Article  PubMed  CAS  Google Scholar 

  60. George, A. J.T. (1999) Measurement of the kinetics of biomolecular interactions using the IAsys resonant mirror biosensor. Curr. Protoc. Immunol. 33, 18.5.1–18.5.19.

    Google Scholar 

  61. Jason-Moller L., Murphy M., and Bruno J. (2006) Overview of Biacore systems and their applications. Curr. Protoc. Protein Sci. 45, 19.13.1–19.13.14.

    Google Scholar 

  62. Schuck P, and Zhao H. (2010) The role of mass transport limitation and surface heterogeneity in the biophysical characterization of macromolecular binding processes by SPR biosensing. Methods Mol. Biol. 627, 15–54.

    Google Scholar 

  63. Stenlund, P., Babcock, G. J., Sodroski, J., and Myszka, D. G. (2003) Capture and reconstitution of G protein-coupled receptors on a biosensor surface. Anal Biochem. 316, 243–250.

    Article  PubMed  CAS  Google Scholar 

  64. Karlsson, R. (1999) Affinity analysis of non-steady-state data obtained under mass transport limited conditions using BIAcore technology. J. Mol. Recognit. 12, 285–292.

    Article  PubMed  CAS  Google Scholar 

  65. Hermkes, R., Funke, S., Richter, C., Kuhlmann, J., and Schünemann, D. (2006). The alpha-helix of the second chromodomain of the 43 kDa subunit of the chloroplast signal recognition particle facilitates binding to the 54 kDa subunit. FEBS Lett. 580, 3107–3111.

    Article  PubMed  CAS  Google Scholar 

  66. Schleiff, E., Soll, J., Sveshnikova, N., Tien, R., Wright, S., Dabney-Smith, C., Subramanian, C., and Bruce, B. D. (2002) Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 41, 19341946.

    Article  PubMed  CAS  Google Scholar 

  67. Jelic, M., Soll, J., and Schleiff, E. (2003) Two Toc34 homologues with different properties. Biochemistry 42, 5906–5916.

    Article  PubMed  CAS  Google Scholar 

  68. Jameson, D. M., Croney, J. C., and Moens, P. D. (2003) Fluorescence: basic concepts, practical aspects, and some anecdotes. Methods Enzymol. 360, 1–43.

    Article  PubMed  CAS  Google Scholar 

  69. Yan, Y., and Marriott, G. (2003) Analysis of protein interactions using fluorescence technologies. Curr. Opin. Chem. Biol. 7, 635–640.

    Article  PubMed  CAS  Google Scholar 

  70. Johnson, A. E. (2005) Fluorescence approaches for determining protein conformations, interactions and mechanisms at membranes. Traffic 6, 1078–1092.

    Article  PubMed  CAS  Google Scholar 

  71. Schleiff, E., Schmitz, A., McIlhinney, R. A. J., Manenti, S., and Vergeres, G. (1996) Myristoylation does not modulate the properties of MARCKS-related protein (MRP) in solution. Journal Biol. Chem. 271, 26794–26802.

    Article  CAS  Google Scholar 

  72. Jaru-Ampornpan, P., Shen, K., Lam, V. Q., Ali, M., Doniach, S., Jia, T. Z., and Shan, S.-O. (2010) ATP-independent reversal of a membrane protein aggregate by a chloroplast SRP subunit. Nature Struct. Mol. Biol. 17, 696–703.

    Article  CAS  Google Scholar 

  73. Sommer, M. S., and Schleiff, E. (2009) Molecular interactions within the plant TOC complex. Biol. Chem. 390, 739–744.

    Article  PubMed  CAS  Google Scholar 

  74. Roy, R., Hohng, S., and Ha, T. (2008) A practical guide to single-molecule FRET. Nat. Methods 5, 507–516.

    Article  PubMed  CAS  Google Scholar 

  75. Mickler, M., Hessling, M., Ratzke, C., Buchner, J., and Hugel, T. (2009) The large conformational changes of Hsp90 are only weakly coupled to ATP hydrolysis. Nat. Struct. Mol. Biol. 16, 281–286.

    Article  PubMed  CAS  Google Scholar 

  76. Zhao, Y., Terry, D., Shi, L., Weinstein, H., Blanchard, S. C., and Javitch, J.A. (2010) Single-molecule dynamics of gating in a neurotransmitter transporter homologue. Nature 465, 188–193.

    Google Scholar 

  77. Hohng, S., Joo, C., and Ha, T. (2004) Single-molecule three-color FRET. Biophys J. 87, 1328–1337.

    CAS  Google Scholar 

  78. Lee, N. K., Kapanidis, A. N., Koh, H. R., Korlann, Y., Ho, S. O., Kim, Y., Gassman, N., Kim, S. K., and Weiss, S. (2007) Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys. J. 92, 303–312.

    Article  PubMed  CAS  Google Scholar 

  79. Heilemann, M., Tinnefeld, P., Sanchez Mosteiro, G., Garcia Parajo, M., Van Hulst, N. F., and Sauer, M. (2004) Multistep energy transfer in single molecular photonic wires. J. Am. Chem. Soc. 126, 6514–6515.

    Article  PubMed  CAS  Google Scholar 

  80. Haustein, E., and Schwille, P. (2004) Single-molecule spectroscopic methods. Curr. Opin. Struct. Biol. 14, 531–540.

    Article  PubMed  CAS  Google Scholar 

  81. Mickler, M., Schleiff, E., and Hugel, T. (2008) From biological towards artificial molecular motors. Chemphyschem 9, 1503–1509.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Schleiff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Tripp, J., Schleiff, E. (2011). Studying Chloroplast Protein Interactions In Vitro: An Overview of the Available Methods. In: Jarvis, R. (eds) Chloroplast Research in Arabidopsis. Methods in Molecular Biology, vol 775. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-237-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-237-3_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-236-6

  • Online ISBN: 978-1-61779-237-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics