Skip to main content

Transplastomics in Arabidopsis: Progress Toward Developing an Efficient Method

  • Protocol
  • First Online:
Chloroplast Research in Arabidopsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 774))

Abstract

Protocols developed for plastome engineering in Nicotiana tabacum rely on biolistic delivery of the transforming DNA to chloroplasts in intact leaf tissue; integration of the foreign DNA into the plastid genome by homologous recombination via flanking plastid DNA (ptDNA) targeting regions; and gradual dilution of non-transformed ptDNA during cultivation in vitro. Plastid transformation in Arabidopsis was obtained by combining the tobacco leaf transformation protocol with Arabidopsis-specific tissue culture and plant regeneration protocols. Because the leaf cells in Arabidopsis are polyploid, this protocol yielded sterile plants. Meristematic cells in a shoot apex or cells of a developing embryo are diploid. Therefore, we developed a regulated embryogenic root culture system that will generate diploid tissue for plastid transformation. This embryogenic culture system is created by steroid-inducible expression of the BABY BOOM transcription factor. Plastid transformation in Arabidopsis will enable the probing of plastid gene function, and the characterization of posttranscriptional mechanisms of gene regulation and the regulatory interactions of plastid and nuclear genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zoschke, R., Liere, K., and Börner, T. (2007) From seedling to mature plant: Arabidopsis plastidial genome copy number, RNA accumulation and transcription are differentially regulated during leaf development. Plant J. 50, 710–722.

    Article  PubMed  CAS  Google Scholar 

  2. Pyke, K. A., and Leech, R. M. (1994) A genetic analysis of chloroplast division and expansion in Arabidopsis thaliana. Plant Physiol. 104, 201–207.

    PubMed  CAS  Google Scholar 

  3. Sato, S., Nakamura, Y., Kaneko, T., Asamizu, E., and Tabata, S. (1999) Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6, 283–290.

    Article  PubMed  CAS  Google Scholar 

  4. Provan, J., and Campanella, J. J. (2003) Patterns of cytoplasmic variation in Arabidopsis thaliana (Brassicaceae) revealed by polymorphic chloroplast microsatellites. Syst. Bot. 28, 578–583.

    Google Scholar 

  5. Sall, T., Jakobsson, M., Lind-Hallden, C., and Hallden, C. (2003) Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica. J. Evol. Biol. 16, 1019–1029.

    Article  PubMed  CAS  Google Scholar 

  6. Azhagiri, A., and Maliga, P. (2007) DNA markers define plastid haplotypes in Arabidopsis thaliana. Curr. Genet. 51, 269–275.

    Article  PubMed  CAS  Google Scholar 

  7. Unseld, M., Marienfeld, J. R., Brandt, P., and Brennicke, A. (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat. Genet. 15, 57–61.

    Article  PubMed  CAS  Google Scholar 

  8. Preuten, T., Cincu, E., Fuchs, J., Zoschke, R., Liere, K., and Börner, T. (2010) Fewer genes than organelles: extremely low and variable gene copy numbers in mitochondria of somatic plant cells. Plant J., in press.

    Google Scholar 

  9. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Article  Google Scholar 

  10. Alonso, J. M., Stepanova, A. N., Leisse, T. J., Kim, C. J., Chen, H., Shinn, P., Stevenson, D. K., Zimmerman, J., Barajas, P., Cheuk, R., Gadrinab, C., Heller, C., Jeske, A., Koesema, E., Meyers, C. C., Parker, H., Prednis, L., Ansari, Y., Choy, N., Deen, H., Geralt, M., Hazari, N., Hom, E., Karnes, M., Mulholland, C., Ndubaku, R., Schmidt, I., Guzman, P., Aguilar-Henonin, L., Schmid, M., Weigel, D., Carter, D. E., Marchand, T., Risseeuw, E., Brogden, D., Zeko, A., Crosby, W. L., Berry, C. C., and Ecker, J. R. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657.

    Article  PubMed  Google Scholar 

  11. Clough, S. J., and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    Article  PubMed  CAS  Google Scholar 

  12. Sikdar, S. R., Serino, G., Chaudhuri, S., and Maliga, P. (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep. 18, 20–24.

    Article  CAS  Google Scholar 

  13. Remacle, C., Cardol, P., Coosemans, N., Gaisne, M., and Bonnefoy, N. (2006) High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. Proc. Natl. Acad. Sci. USA 103, 4771–4776.

    Article  PubMed  CAS  Google Scholar 

  14. Lutz, K. A., Svab, Z., and Maliga, P. (2006) Construction of marker-free transplastomic tobacco using the Cre-loxP site-specific recombination system. Nat. Protocols 1, 900–910.

    Article  CAS  Google Scholar 

  15. Lutz, K. A., and Maliga, P. (2007) Transformation of the plastid genome to study RNA editing. Methods Enzymol. 424, 501–518.

    Article  PubMed  CAS  Google Scholar 

  16. Maliga, P., and Svab, Z. (2010) Engineering the plastid genome of Nicotiana sylvestris, a diploid model species for plastid genetics. In, Plant Chromosome Engineering: Methods and Protocols (Birchler, J. J., ed.), Humana Press, Totowa, NJ, USA, in press.

    Google Scholar 

  17. Svab, Z., and Maliga, P. (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90, 913–917.

    Article  PubMed  CAS  Google Scholar 

  18. Carrer, H., Hockenberry, T. N., Svab, Z., and Maliga, P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241, 49–56.

    Article  PubMed  CAS  Google Scholar 

  19. Huang, F. C., Klaus, S. M. J., Herz, S., Zuo, Z., Koop, H. U., and Golds, T. J. (2002) Efficient plastid transformation in tobacco using the aphA-6 gene and kanamycin selection. Mol. Genet. Genomics 268, 19–27.

    Article  PubMed  CAS  Google Scholar 

  20. Lutz, K., Corneille, S., Azhagiri, A. K., Svab, Z., and Maliga, P. (2004) A novel approach to plastid transformation utilizes the phiC31 phage integrase. Plant J. 37, 906–913.

    Article  PubMed  CAS  Google Scholar 

  21. Barone, P., Zhang, X. H., and Widholm, J. M. (2009) Tobacco plastid transformation using the feedback-insensitive anthranilate synthase [α]-subunit of tobacco (ASA2) as a new selectable marker. J. Exp. Bot. 60, 3195–3202.

    Article  PubMed  CAS  Google Scholar 

  22. Galbraight, D. W., Harkins, K. R., and Knapp, S. (1991) Systemic endopolyploidy in Arabidopsis thaliana. Plant Physiol. 96, 985–989.

    Article  Google Scholar 

  23. Melaragno, J. E., Mehrotra, B., and Coleman, A. W. (1993) Relationship between endopolyploidy and cell size in epidermal tissue of Arabidopsis. Plant Cell 5, 1661–1668.

    Article  PubMed  Google Scholar 

  24. Nole-Wilson, S., Tranby, T. L., and Krizek, B. A. (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol. Biol. 57, 613–628.

    Article  PubMed  CAS  Google Scholar 

  25. Riechmann, J. L., Heard, J., Martin, G., Reuber, L., Jiang, C.-Z., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O. J., Samaha, R. R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J. Z., Ghandehari, D., Sherman, B. K., and Yu, G. L. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105–2110.

    Article  PubMed  CAS  Google Scholar 

  26. Boutilier, K., Offringa, R., Sharma, V. K., Kieft, H., Ouellet, T., Zhang, L., Hattori, J., Liu, C. M., van Lammeren, A. A. M., Miki, B. L. A., Custers, J. B. M., and van Lookeren Campagne, M. M. (2002) Ectopic expression of BABY BOOM triggers a conversion of vegetative to embryonic growth. Plant Cell 14, 1737–1749.

    Article  PubMed  CAS  Google Scholar 

  27. Lloyd, A. M., Schena, M., Walbot, V., and Davis, R. W. (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science 266, 436–439.

    Article  PubMed  CAS  Google Scholar 

  28. Srinivasan, C., Liu, Z., Heidmann, I., Supena, E. D., Fukuoka, H., Joosen, R., Lambalk, J., Angenent, G., Scorza, R., Custers, J. B., and Boutilier, K. (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225, 341–351.

    Article  PubMed  CAS  Google Scholar 

  29. Zuo, J., and Chua, N. H. (2000) Chemical-inducible systems for regulated expression of plant genes. Curr. Opin. Biotechnol. 11, 146–151.

    Article  PubMed  CAS  Google Scholar 

  30. Cheng, L., Li, H. P., Qu, B., Huang, T., Tu, J. X., Fu, T. D., and Liao, Y. C. (2010) Chloroplast transformation of rapeseed (Brassica napus) by particle bombardment of cotyledons. Plant Cell Rep. 29, 371–381.

    Article  PubMed  CAS  Google Scholar 

  31. Hou, B. K., Zhou, Y. H., Wan, L. H., Zhang, Z. L., Shen, G. F., Chen, Z. H., and Hu, Z. M. (2003) Chloroplast transformation in oilseed rape. Transgenic Res. 12, 111–114.

    Article  PubMed  CAS  Google Scholar 

  32. Liu, C. W., Lin, C. C., Chen, J. J., and Tseng, M. J. (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep. 26, 1733–1744.

    Article  PubMed  CAS  Google Scholar 

  33. Nugent, G. D., Coyne, S., Nguyen, T. T., Kavanagh, T. A., and Dix, P. J. (2006) Nuclear and plastid transformation of Brassica oleracea var. botrytis (cauliflower) using PEG-mediated uptake into protoplasts. Plant Sci. 170, 135–142.

    Article  CAS  Google Scholar 

  34. Skarjinskaia, M., Svab, Z., and Maliga, P. (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res. 12, 115–122.

    Article  PubMed  CAS  Google Scholar 

  35. Bock, R. (2007) Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Curr. Opin. Biotechnol. 18, 100–106.

    Article  PubMed  CAS  Google Scholar 

  36. Daniell, H., Kumar, S., and Dufourmantel, N. (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol. 23, 238–245.

    Article  PubMed  CAS  Google Scholar 

  37. Zuo, J., Niu, Q. W., and Chua, N. H. (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349–359.

    Article  PubMed  CAS  Google Scholar 

  38. Marton, L., and Browse, J. (1991) Facile transformation of Arabidopsis. Plant Cell. Rep. 10, 235–239.

    Article  Google Scholar 

  39. Murashige, T., and Skoog, F. (1962) A revised medium for the growth and bioassay with tobacco tissue culture. Physiol. Plant 15, 473–497.

    Article  CAS  Google Scholar 

  40. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907.

    PubMed  CAS  Google Scholar 

  41. Gallagher, S. R. (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. Academic Press, San Diego, CA, USA.

    Google Scholar 

Download references

Acknowledgments

This research was supported by Grant MCB-039958 from the NSF Eukaryotic Genetics Program. K.A.L. was the recipient of a Charles and Johanna Busch Predoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pal Maliga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lutz, K.A., Azhagiri, A., Maliga, P. (2011). Transplastomics in Arabidopsis: Progress Toward Developing an Efficient Method. In: Jarvis, R. (eds) Chloroplast Research in Arabidopsis. Methods in Molecular Biology, vol 774. Humana Press. https://doi.org/10.1007/978-1-61779-234-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-234-2_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-233-5

  • Online ISBN: 978-1-61779-234-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics