Skip to main content

Challenges Facing Seed Banks and Agriculture in Relation to Seed Quality

  • Protocol
  • First Online:
Book cover Seed Dormancy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 773))

Abstract

Seeds form a convenient vehicle for storage of germplasm, both for agricultural purposes and conservation of wild species. When required, seeds can be taken from storage and germinated, and plants can be propagated for the desired purpose, e.g., crop production or biome restoration. However, seed dormancy often interferes with stand establishment or industrial utilization in crops and germination of wild species. An anticipated termination of dormancy (i.e., before crop harvest) also occurs, with preharvest sprouting as a consequence. In order to overcome these problems, a better understanding of dormancy is required. This chapter is devoted to discuss the achievement of such understanding in problematic species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baskin CC, Baskin JM (1998) Seeds: ecology biogeography and evolution of dormancy and germination. Academic Press, San Diego

    Google Scholar 

  2. Nikolaeva MG (1969) Physiology of deep dormancy in seeds. National Science Foundation, Washington (DC)

    Google Scholar 

  3. Finch-Savage WE and Leubner-Metzger G (2007) Seed dormancy and the control of germination. New Phytol 171: 501–523

    Google Scholar 

  4. Corbineau F, Bagniol S, and Côme D (1990). Sunflower (Helianthus annuus L.) seed dormancy and its regulation by ethylene. Isr J Bot 39: 313–325

    Google Scholar 

  5. Corbineau F and Côme D (1987). Regulation de les semences de tournesol par l`éthylene. In  : Annales ANPP, 2ème Colloque sur les substances de croissance et leurs utilisations en agriculture. Vol. 1. Association Nationale de Protection des Plantes, Paris.

    Google Scholar 

  6. Cseresnyes Z (1979) Studies on the duration of dormancy and methods of determining the germination of dormant seeds of Helianthus ­annuus. Seed Sci Technol 7: 179–188

    Google Scholar 

  7. Corbineau F (1987) La germination des semences de tournesol et sa regulation par l`éthylene. C R Acad Sci Paris, Sér D. 266: 477–479

    Google Scholar 

  8. Le Page-Degivry MT and Garello G (1992) In situ abscisic acid synthesis. A requirement for induction of embryo dormancy in Helianthus annuus. Plant Physiol 98: 1386–1390

    Google Scholar 

  9. Le Page-Degivry MT, Barthe P, and Garello G (1990) Involvement of endogenous abscisic acid in onset and release of Helianthus annuus embryo dormancy. Plant Physiol 92: 1164–1168

    Google Scholar 

  10. Bianco J, Garello G, and Le Page-Degivry MT (1994) Release of dormancy in sunflower embryos by dry storage: involvement of gibbrellins and abscisic acid. Seed Sci Res 4: 57–62

    Google Scholar 

  11. Oracz K, El-Maarouf Bouteau H, Farrant JM et al (2007) ROS production and protein oxidation as a novel mechanism of seed dormancy alleviation. Plant J 50: 452–465

    Google Scholar 

  12. Abeles FB (1986) Role of ethylene in Lactuca sativa cv. Grand Rapids seed germination. Plant Physiol 81: 780–787

    Google Scholar 

  13. Ketring DL (1977) Ethylene and seed germination. In: Khan AA (ed) The physiology and biochemistry of seed dormancy and germination, Elsevier, Amsterdam

    Google Scholar 

  14. Srivastava AK and Dey SC (1982) Physiology of seed dormancy in sunflower. Acta Agron Acad Sci Hung. 31: 70–80

    Google Scholar 

  15. Bagniol S (1987) Mise en évidence de l´intervention de l`ethylene dans la germination et la dormance des semences de tournesol (Helianthus annuus L.). Diplôme d`Ëtudes Approfondies. Université Pierre et Marie Curie, Paris

    Google Scholar 

  16. Seiler GJ (1998) Seed maturity, storage time and temperature, and media treatment effects on germination of two wild sunflowers. Agron J 90: 221–226

    Google Scholar 

  17. Oracz K, El Maarouf-Bouteau H, Bogatek R et al (2008) Release of sunflower seed dormancy by cyanide: crosstalk with ethylene signaling pathway. J Exp Bot 59: 2241–2251

    Google Scholar 

  18. Oracz K, El-Maarouf-Bouteau H, Kranner I et al (2009) The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key actors of cellular signalling during germination. Plant Physiol 150: 494–505

    Google Scholar 

  19. Benech-Arnold RL, Giallorenzi MC, Frank J et al (1999) Termination of hull-imposed dormancy in barley is correlated with changes in embryonic ABA content and sensitivity. Seed Sci Res 9: 39–47

    Google Scholar 

  20. Lenoir C, Corbineau F, and Come D (1986) Barley (Hordeum vulgare) seed dormancy as related to glumella characteristics. Physiol Plantarum 68: 301–307

    Google Scholar 

  21. Corbineau F, Poljakoff-Mayber A, and Côme D (1991) Responsiveness to abscisic acid of embryos of dormant oat (Avena sativa) seeds. Involvement of ABA-inducible proteins. Physiol Plantarum 83: 1–6

    Google Scholar 

  22. Corbineau F and Côme D (1980) Quelques caractéristiques de la dormance du caryopse d’Orge (Hordeum vulgare variété Sonja). C R Acad Sci Paris, Sér D. 280: 547–550

    Google Scholar 

  23. Benech-Arnold RL (2004) Inception, maintenance and termination of dormancy in grain crops. Physiology, genetics and environmental control. In: Benech-Arnold R and Sánchez RA (eds) Handbook of seed physiology: applications to agriculture. Food Product Press, New York

    Google Scholar 

  24. Pollock JRA (1962) The nature of the malting process. In: Cook AM (ed) Barley and malt: biology, biochemistry, technology. Academic Press, New York

    Google Scholar 

  25. Wang M, van der Meulen RM, Visser K et al (1998) Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci Res 8: 129–137

    Google Scholar 

  26. Benech-Arnold RL, Gualano NA, Leymarie J et al (2006) Hypoxia interferes with ABA metabolism and increases ABA sensitivity in embryos of dormant barley grains. J Exp Bot 57: 1423–1430

    Google Scholar 

  27. Millar AA, Jacobsen JV, Ross JJ et al (2006) Seed dormancy and ABA metabolism in Arabidopsis and barley: the role of ABA 8’-hydroxylase. Plant J 45: 942–954

    Google Scholar 

  28. Mendiondo GM, Leymarie J, Farrant J et al (2010) Differential expression of abscisic acid metabolism and signaling genes induced by seed-covering structures or hypoxia in barley (Hordeum vulgare L.) grains. Seed Sci Res 20: 69–77

    Google Scholar 

  29. Brookes PA, Lovett DA, and MacWilliam IC (1976) The steeping of barley. A review of the metabolic consequences of water uptake, and their practical implications. J I Brewing 82: 14–26

    Google Scholar 

  30. Gubler F, Hughes T, Waterhouse P et al (2008) Regulation of dormancy in barley by blue light and after-ripening: Effects on abscisic acid and gibberellin metabolism. Plant Physiol 147: 1–11

    Google Scholar 

  31. Biddulph TB, Plummer JA, Setter TL et al (2008) Seasonal conditions influence dormancy and preharvest sprouting tolerance of wheat (Triticum aestivum L.) in the field. Field Crop Res 107: 116–128

    Google Scholar 

  32. Steinbach HS, Benech-Arnold RL, Kristof G et al (1995) Physiological basis of pre-harvest sprouting resistance in Sorghum bicolor (L.) Moench. ABA levels and sensitivity in developing embryos of sprouting-resistant and sprouting-susceptible varieties. J Exp Bot 46: 701–709

    Google Scholar 

  33. Steinbach HS, Benech-Arnold RL and Sánchez R (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol 113: 149–154

    Google Scholar 

  34. Rodríguez MV, Mendiondo GM, Maskin L et al (2009) Expression of ABA signalling genes and ABI5 protein levels in imbibed Sorghum bicolor caryopses with contrasting dormancy and at different developmental stages. Ann Bot-London 104: 975–985

    Google Scholar 

  35. Gao FY, Ren GJ, Lu XJ et al (2008) QTL analysis for resistance to preharvest sprouting in rice (Oryza sativa). Plant Breeding 127: 268–273

    Google Scholar 

  36. Kumar A, Kumar J, Singh E et al (2009). QTL analysis for grain colour and pre-harvest sprouting in bread wheat. Plant Sci 177: 114–122

    Google Scholar 

  37. Lohwasser U, Roder MS and Borner A (2005) QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143: 247–249

    Google Scholar 

  38. Zanetti S, Winzeler M, Keller M et al (2000) Genetic analysis of pre-harvest sprouting resistance in a wheat x spelt cross. Crop Sci 40: 1406–1417

    Google Scholar 

  39. Del Fueyo P, Sánchez RA, Benech-Arnold RL (2003) Seed longevity in two sorghum varieties with contrasting dormancy level prior to harvest. Seed Sci Technol 31: 639–650

    Google Scholar 

  40. Finkelstein RR, Reeves W, Ariizumi T et al (2008) Molecular aspects of seed dormancy. Annu Rev Plant Biol 59: 387–415

    Google Scholar 

  41. Ji HS, Chu SH, Jiang W et al (2006) Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics 173: 995–1005

    Google Scholar 

  42. Mares DJ, Mrva K, Cheong J et al (2005) A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theor App Gen 111:1357–1364

    Google Scholar 

  43. Barrero JM, Talbot MJ, White RG et al (2009) Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol 150: 1006–1021

    Google Scholar 

  44. Khan RA and Laude HM (1969) Influence of heat stress during seed maturation on germinability of barley seed at harvest. Crop Sci 9: 55–58

    Google Scholar 

  45. Nicholls PB (1982) Influence of temperature during grain growth and ripening of barley on the subsequent response to exogenous gibberellic acid. Australian J Plant Physiol 9: 373–383

    Google Scholar 

  46. Reiner L and Loch V (1976) Forecasting dormancy in barley – ten years experience. Cereal Res Commun 4: 107–110

    Google Scholar 

  47. Schuurink RC, Van Beckum JMM, and Heidekamp F (1992) Modulation of grain dormancy in barley by variation of plant growth conditions. Hereditas 117: 137–143

    Google Scholar 

  48. Cochrane MP (1993) Effects of temperature during grain development on the germinability of barley grains. Asp Appl Biol 36: 103–113

    Google Scholar 

  49. Auranen M (1995) Pre-harvest sprouting and dormancy in malting barley in northern climatic conditions. Acta Agriculturae Scand 45: 89–95

    Google Scholar 

  50. Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res 1: 75–84

    Google Scholar 

  51. Wulff RD (1995) Environmental maternal effects on seed quality and germination. In: Kigel J and Galili G (eds) Seed development and germination. Marcel Dekker Inc, New York

    Google Scholar 

  52. Walker-Simmons MK and Sesing J (1990) Temperature effects on embryonic abscisic acid levels during development of wheat grain dormancy. J Plant Growth Regul 9: 51–56

    Google Scholar 

  53. Benech-Arnold RL, Fenner M, and Edwards PJ (1991) Changes in germinability, ABA levels and ABA embryonic sensitivity in developing seeds of Sorghum bicolor induced by water stress during grain filling. New Phytol 118: 339–347

    Google Scholar 

  54. Benech-Arnold RL, Fenner M, and Edwards PJ (1995) Influence of potassium nutrition on germinability, ABA content and embryonic sensitivity to ABA of developing seeds of Sorghum bicolor (L.) Moench. New Phytol 130: 207–216

    Google Scholar 

  55. Gate P (1995) Ecophysiologie de la germination sur pied. Perspec Agr 204: 22–29

    Google Scholar 

  56. Kivi E (1966) The response of certain pre-harvest climatic factors on sensitivity to sprouting in the ear of two-row barley. Acta Agriculturae Fenn 107: 228–246

    Google Scholar 

  57. Buraas T and Skinnes H (1985) Development of seed dormancy in barley, wheat and triticale under controlled conditions. Acta Agriculturae Scand 35: 233–244

    Google Scholar 

  58. Rodríguez V, González Martín J, Insausti P et al (2001) Predicting pre-harvest sprouting susceptibility in barley: a model based on temperature during grain filling. Agron J 93: 1071–1079

    Google Scholar 

  59. Gualano NA and Benech-Arnold RL (2009a) Predicting pre-harvest sprouting susceptibility in barley: Looking for “sensitivity windows” to temperature throughout grain filling in various commercial cultivars. Field Crop Res 114: 35–44

    Google Scholar 

  60. Gualano NA, Benech-Arnold RL (2009b) The effect of water and nitrogen availability during grain filling on the timing of dormancy release in malting barley crops. Euphytica 168: 291–301

    Google Scholar 

  61. Fonseca A and Sánchez RA (2000) Efecto de la temperatura durante el llenado de grano sobre la germinación de semillas de girasol (Helianthus annuus L.). In: Rubén Bottini (ed) Abstracts from the XXIII Reunión Argentina de Fisiología Vegetal. Universidad Nacional de Río Cuarto, Córdoba

    Google Scholar 

  62. Shen-Millar J (2002) Sacred lotus, the long-living fruits of China Antique. Seed Sci Res 12: 131–143

    Google Scholar 

  63. Ali N, Probert R, Hay F et al (2007) Post-dispersal embryo growth and acquisition of desiccation tolerance in Anemone nemorosa L. seeds. Seed Sci Res 17: 155–163

    Google Scholar 

  64. Probert RJ, Daws MI, Hay FR (2009) Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Ann Bot-London 104: 57–69

    Google Scholar 

  65. Clerkx EJM, Blankestijn-De Vies H, Ruys GJ et al (2004) Genetic differences in seed longevity of various Arabidopsis mutants. Physiol Plantarum 121: 448–461

    Google Scholar 

  66. Berjak P, Pammenter NW (2007) From Avicennia to Zizania: seed recalcitrance in perspective. Ann Bot-London 101: 213–228

    Google Scholar 

  67. Elmqvist T, Cox PA (1996) The evolution of vivipary in flowering plants. Oikos 77: 3–9

    Google Scholar 

  68. Carrera E, Holman T, Medhurst A et al (2008) Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J 53: 214–244

    Google Scholar 

  69. Baskin JM, Baskin CC (2004) A classification system for dormancy. Seed Sci Res 14: 1–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Verónica Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rodríguez, M.V., Toorop, P.E., Benech-Arnold, R.L. (2011). Challenges Facing Seed Banks and Agriculture in Relation to Seed Quality. In: Kermode, A. (eds) Seed Dormancy. Methods in Molecular Biology, vol 773. Humana Press. https://doi.org/10.1007/978-1-61779-231-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-231-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-230-4

  • Online ISBN: 978-1-61779-231-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics