Skip to main content

Identification of Seed Dormancy Mutants by Activation Tagging

  • Protocol
  • First Online:
Book cover Seed Dormancy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 773))

Abstract

Activation tagging is an important tool for gene discovery in plants. This method utilizes a T-DNA sequence that contains four tandem copies of the cauliflower mosaic virus 35S enhancer sequence or promoters oriented outward to the T-DNA border sequences. These elements enhance the expression of genes neighboring on either side of the randomly integrated T-DNA, resulting in gain-of-function phenotypes. Activation tagging has identified a number of genes, including those fundamental to plant development, such as the floral inducer gene, FLOWERING LOCUS T  (FT  ). The methods surrounding activation-tagging approaches are described in this chapter. While seeds have generally not been the targets of these methods in the past, activation tagging provides a powerful approach to uncover genes involved in seed dormancy and germination, including those that mediate hormone signal transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weigel, D., Ahn, J. H., Blazquez, M. A., Borevitz, J., Christensen, S. K., Fankhauser, C., Ferrandiz, C., Kardailsky, I., Malancharuvil, E. J., Neff, M. M., Nguyen, J. T., Sato, S., Wang, Z., Xia, Y., Dixon, R. A., Harrison, M. J., Lamb, C. J., Yanofsky, M. F., and Chory, J. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–14.

    Google Scholar 

  2. Pan, X., Li, Y., and Stein, L. (2005) Site preferences of insertional mutagenesis agents in Arabidopsis, Plant Physiol. 137, 168–75.

    Google Scholar 

  3. Schneeberger, R.G., Zhang, K., Tatarinova, T. et al. (2005) Agrobacterium T-DNA integration in Arabidopsis is correlated with DNA sequence compositions that occur frequently in gene promoter regions. Funct. Integr. Genomics. 5, 240–53.

    Google Scholar 

  4. Zuo, J., Niu, Q.W., Frugis, G., Chua, N.H. (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J. 30, 349–59.

    Google Scholar 

  5. Sung JQ, Niu QW, Tarkowski P, Zheng BL, Tarkowska D, Sandberg G, Chua NH, Zuo JR(2003) Plant Physiol. 131, 167–76

    Google Scholar 

  6. Tani, H, Chen, X., Nurmberg, P., Grant, J.J., SantaMaria, M., Chini, A., Gilroy, E., Birch, P.R., and Loake, G.J. (2004) Activation tagging in plants: a tool for gene discovery. Funct. Integr. Genomics 4, 258–66.

    Google Scholar 

  7. Aukerman, M.J., and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15, 2730–41.

    Google Scholar 

  8. Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington J.C. and Weigel, D. (2003) Control of leaf morphogenesis by microRNAs. Nature 425, 257–63.

    Google Scholar 

  9. Salaita, L., Kar, R.K., Majee, M., and Downie, A.B. (2005) Identification and characterization of mutants capable of rapid seed germination at 10 8 C from activation-tagged lines of Arabidopsis thaliana. J. Exp. Bot. 56, 2059–69.

    Google Scholar 

  10. Koncz, C., Kreuzalerl, F., Kalmanl, Z., and Schell, J. (1984) A simple method to transfer, integrate and study expression of foreign genes, such as chicken ovalbumin and α-actin in plant tumors. EMBO J. 3, 1029–37.

    Google Scholar 

  11. Ooms, G., Regensburg-Tuink, T. J. G.  Hofker, M. H., Hoekema, A., Hooykaas, P. J. J., and Schilperoort, R.A, (1982).  Studies on the structure of cointegrates between octopine and nopaline Ti-plasmids and their tumor-inducing properties. Plant Mol. Biol. 1, 265–76.

    Google Scholar 

  12. Clough, S.J., and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–43.

    Google Scholar 

  13. Zhang, X., Henriques, R., Lin, S., Niu, Q., and Chua, N.H. (2006) Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1(2), 1–6.

    Google Scholar 

  14. Liu, Y. G., Mitsukawa, N., Oosumi, T., and Whittier, R. F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8, 457–63.

    Google Scholar 

  15. Ochman, H., Geber, A.S., and Hartl, D.L. (1988) Genetic application of an inverse polymerase chain reaction. Genetics, 120, 621–3.

    Google Scholar 

  16. Meza, T.J., Stangeland, B., Mercy, I., Skarn, M., Nymoen, D. A., Berg, A. Butenko, M.A., Hakelien, A., Haslekas, C., Meza-Zepeda, M., and Aalen, R.B. (2002) Analyses of single-copy Arabidopsis T-DNA-transformed lines show that the presence of vector backbone sequences, short inverted repeats and DNA methylation is not sufficient or necessary for the induction of transgene silencing. Nucleic Acids Res. 30, 4556–66.

    Google Scholar 

  17. Romit Chakrabarty,R., Rituparna Banerjee, R., Chung, S., Mark Farman,M., Citovsky, V., Hogenhout, S., Tzvi Tzfira, T., and Goodin, M. (2007) pSITE Vectors for Stable Integration or Transient Expression of Autofluorescent Protein Fusions in Plants: Probing Nicotiana benthamiana-Virus Interactions. Molecular Plant-Microbe Interaction 20, 740-50.

    Google Scholar 

  18. Curtis, M., and Grossniklaus, U. (2003) A Gateway TM cloning vector set for high-throughput functional analysis of genes in plants. Plant Physiol. 133, 462–9.

    Google Scholar 

  19. Brand L., Hoerler M., Nuesch E., Vassalli S., Barrell P., Yang W., Jefferson R.A., Grossniklaus U., and Curtis, M.D. (2006) A versatile and reliable two-component system for tissue-­specific gene induction in Arabidopsis. Plant Physiol. 141, 1194–1204.

    Google Scholar 

Download references

Acknowledgments

This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery grant awarded to A.R. Kermode.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison R. Kermode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhao, T., Zeng, Y., Kermode, A.R. (2011). Identification of Seed Dormancy Mutants by Activation Tagging. In: Kermode, A. (eds) Seed Dormancy. Methods in Molecular Biology, vol 773. Humana Press. https://doi.org/10.1007/978-1-61779-231-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-231-1_12

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-230-4

  • Online ISBN: 978-1-61779-231-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics