Skip to main content

Identification and Characterization of Quantitative Trait Loci that Control seed Dormancy in Arabidopsis

  • Protocol
  • First Online:
Seed Dormancy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 773))

Abstract

Seed dormancy is a trait that is under multigenic control and affected strongly by environmental factors. Thus, seed dormancy is a typical quantitative trait. Natural accessions of Arabidopsis thaliana exhibit a great deal of genetic variation for seed dormancy. This natural variation can be used to identify genes controlling this trait by means of quantitative trait loci (QTL) mapping. In this chapter, we describe how QTL mapping for seed dormancy in Arabidopsis thaliana can be performed and how QTL analyses can be used to eventually identify the causal gene. Methods and recourses available specifically for Arabidopsis are described or referred to.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bentsink, L, Soppe, WJJ, and Koornneef, M (2007) Genetic aspects of seed dormancy. in Seed Development, dormancy and Germination (Bradford, KJ, and Nonogaki, H, Eds), Blackwell Publishing, Oxford

    Google ScholarĀ 

  2. Bentsink, L, and Koornneef, M (2008) Seed dormancy and germination. in The Arabidopsis Book (Somerville, CR, and Meyerowitz, EM, Eds), American Society of Plant Biologist, Rockville, MD, doi: 10.1199/tab.0119, http://www.aspb.org/publications/arabidopsis/

  3. Koornneef, M, Alonso-Blanco, C, and Vreugdenhil, D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annu Rev Plant Biol 55, 141ā€“172

    Google ScholarĀ 

  4. Keurentjes, JJB, et al (2007) Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 175, 891ā€“905

    Google ScholarĀ 

  5. TƶrjĆ©k, O, et al (2008) Construction and analysis of 2 reciprocal Arabidopsis introgression line populations. J Heridity 99, 396ā€“406

    Google ScholarĀ 

  6. Koumproglou, R, et al (2002) STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J 31, 355ā€“364

    Google ScholarĀ 

  7. Nordborg, M, et al (2005) The pattern of polymorphism in Arabidopsis thaliana. Plos Biol 3, 1289ā€“1299

    Google ScholarĀ 

  8. Clark, RM, et al (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338ā€“342

    Google ScholarĀ 

  9. Warthmann, N, Fitz, J, and Weigel, D (2007) MSQT for choosing SNP assays from multiple DNA alignments. Bioinformatics 23, 2784ā€“2787

    Google ScholarĀ 

  10. Bell, CJ, and Ecker, JE (1994) Assignment of 30 microsatellite loci to the linkage map of Arabidopsis. Genomics 19, 137ā€“144

    Google ScholarĀ 

  11. Clauss, MJ, Cobban, H, and Mitchell-Olds, T (2002) Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae). Mol Ecol 11, 591ā€“601

    Google ScholarĀ 

  12. Loudet, O, et al (2002) Bay-0 x Shahdara recombinant inbred line population: a powerful tool for the genetic dissection of complex traits in Arabidopsis. Theor Appl Genet 104, 1173ā€“1184

    Google ScholarĀ 

  13. Jander, G, et al (2002) Arabidopsis map-based cloning in the post-genome era. Plant Physiol 129, 440ā€“450

    Google ScholarĀ 

  14. Borevitz, JO, et al (2007) Genome-wide patterns of single-feature polymorphism in Arabidopsis thaliana. Proc Natl Acad Sci USA 104, 12057ā€“12062

    Google ScholarĀ 

  15. Zhang, X, et al (2008) Whole genome transcriptome polymorphisms in Arabidopsis thaliana. Genome Biol 9, R165

    Google ScholarĀ 

  16. Tuinstra, MR, Ejeta, G, and Goldsbrough, PB (1997) Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic lines that differ at quantitative trait loci. Theor Appl Genet 95, 1005ā€“1011

    Google ScholarĀ 

  17. Loudet, O, et al (2005) Quantitative trait loci controlling root growth and architecture in Arabidopsis thaliana confirmed by heterogeneous inbred family. Theor Appl Genet 110, 742ā€“753

    Google ScholarĀ 

  18. Paran, I, and Zamir, D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19, 303ā€“306

    Google ScholarĀ 

  19. Schmid, KJ, et al (2003) Large-scale identification and analysis of genome-wide single-Ā­nucleotide polymorphisms for mapping in Arabidopsis thaliana. Genome Res 13, 1250ā€“1257

    Google ScholarĀ 

  20. Nordborg, M, and Weigel, D (2008) Next-generation genetics in plants. Nature 456, 720ā€“723

    Google ScholarĀ 

  21. Van der Schaar, W, et al (1997) QTL analysis of seed dormancy in Arabidopsis using recombinant inbred lines and MQM mapping. Heredity 79, 190ā€“200

    Google ScholarĀ 

  22. Alonso-Blanco, C, et al (2003) Analysis of natural allelic variation at seed dormancy loci of Arabidopsis thaliana. Genetics 164, 711ā€“729

    Google ScholarĀ 

  23. Clerkx, EJM, et al (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135, 432ā€“443

    Google ScholarĀ 

  24. Laserna, MP, Sanchez, RA, and Botto, JF (2008) Light-related loci controlling seed Ā­germination in Ler x Cvi and Bay-0 x Sha recombinant inbred-line populations of Arabidopsis thaliana. Ann Bot 102, 631ā€“642

    Google ScholarĀ 

  25. Meng, PH, et al (2008) Analysis of natural allelic variation controlling Arabidopsis thaliana seed germinability in response to cold and dark: Indentification of three major quantitative trait loci. Mol Plant 1, 145ā€“154

    Google ScholarĀ 

  26. Bentsink, L, et al (2006) Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proc Natl Acad Sci USA 103, 17042ā€“17047

    Google ScholarĀ 

  27. Bentsink L, et al. (2010) Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci USA 107, 4264ā€“4269

    Google ScholarĀ 

  28. Kearsey, MJ, and Pooni, HS (1996) The Genetical Analysis of Quantitative Traits, Chapman and Hall, London, UK

    Google ScholarĀ 

  29. Lynch, M, and Walsh, B (1998) Genetics and Analysis of quantitative traits, Sinauer Associates, Inc., Massachusetts, USA

    Google ScholarĀ 

  30. Sambrook, J (2001) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York

    Google ScholarĀ 

  31. Ausubel, FM, et al (2002) Short Protocols in Molecular Biology, John Wiley & Sons, West Sussex, UK

    Google ScholarĀ 

  32. Clough, SJ, and Bent, AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16, 735ā€“743

    Google ScholarĀ 

  33. Alonso-Blanco, C, and Koornneef, M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5, 22ā€“29

    Google ScholarĀ 

  34. Baskin, CC, and Baskin, JM (1998) Seeds: Ā­ecology, biogeography, and evolution of dormancy and germination, Academic Press, San Diego

    Google ScholarĀ 

  35. McKhann, HI, et al (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38, 193ā€“202

    Google ScholarĀ 

  36. Ali-Rachedi, S, et al (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219, 479ā€“488

    Google ScholarĀ 

  37. Nordborg, M, et al (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30, 190ā€“193

    Google ScholarĀ 

  38. Drouaud, J, et al (2006) Variation in crossing-over rates across chromosome 4 of Arabidopsis thaliana reveals the presence of meiotic recombination ā€œhot spotsā€. Genome Res 16, 106ā€“114

    Google ScholarĀ 

Download references

Acknowledgments

The authors thank Colin Coltrane, Paul Keizer, and Prof. Dr. Fred van Eeuwijk for providing the formula for the regression curve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Koornneef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bentsink, L., Koornneef, M. (2011). Identification and Characterization of Quantitative Trait Loci that Control seed Dormancy in Arabidopsis . In: Kermode, A. (eds) Seed Dormancy. Methods in Molecular Biology, vol 773. Humana Press. https://doi.org/10.1007/978-1-61779-231-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-231-1_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-230-4

  • Online ISBN: 978-1-61779-231-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics