Skip to main content

Experimental Approaches to Evaluate the Contributions of Candidate Protein-Coding Mutations to Phenotypic Evolution

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 772))

Abstract

Identifying mechanisms of molecular adaptation can provide important insights into the process of phenotypic evolution, but it can be exceedingly difficult to quantify the phenotypic effects of specific mutational changes. To verify the adaptive significance of genetically based changes in protein function, it is necessary to document functional differences between the products of derived and wild-type alleles and to demonstrate that such differences impinge on higher-level physiological processes (and ultimately, fitness). In the case of metabolic enzymes, this requires documenting in vivo differences in reaction rate that give rise to differences in flux through the pathway in which the enzymes function. These measured differences in pathway flux should then give rise to differences in cellular or systemic physiology that affect fitness-related variation in whole-organism performance. Efforts to establish these causal connections between genotype, phenotype, and fitness require experiments that carefully control for environmental variation and background genetic variation. Here, we discuss experimental approaches to evaluate the contributions of amino-acid mutations to adaptive phenotypic change. We discuss conceptual and methodological issues associated with in vitro and in vivo studies of protein function, and the evolutionary insights that can be gleaned from such studies. We also discuss the importance of isolating the effects of individual mutations to distinguish between positively selected substitutions that directly contribute to improvements in protein function versus positively selected, compensatory substitutions that mitigate negative pleiotropic effects of antecedent changes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gillespie JH (1991) The Causes of Molecular Evolution, Oxford University Press, New York

    Google Scholar 

  2. Storz JF, Wheat CW (2010) Integrating evolutionary and functional approaches to infer adaptation at specific loci, Evolution 64: 2489–2509

    Article  PubMed  CAS  Google Scholar 

  3. Hochachka PW, Somero GN (2002) Biochemical Adaptation. Mechanism and Process in Physiological Evolution

    Google Scholar 

  4. Albery WJ, Knowles JR (1976) Evolution of enzyme function and the development of catalytic efficiency, Biochemistry 15: 5631–5640

    Article  PubMed  CAS  Google Scholar 

  5. Fersht A (1999) Structure and Mechanism in Protein Science, W. H. Freeman and Co., New York

    Google Scholar 

  6. Laurie CC, Stam LF (1988) Quantitative analysis of RNA produced by slow and fast alleles of Adh in Drosophila melanogaster, Proc Natl Acad Sci USA 85:5161–5165

    Article  PubMed  CAS  Google Scholar 

  7. Crawford DL, Powers DA (1989) Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus. Proc Natl Acad Sci USA 86:9365–9369

    Article  PubMed  CAS  Google Scholar 

  8. Clarke B (1975) The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection at particular polymorphic loci. Genetics 79:101–113

    PubMed  Google Scholar 

  9. Koehn RK, Zera AJ, Hall JG (1983) Enzyme polymorphism and natural selection. In: Nei M, Koehn RK, (eds.) Evolution of genes and proteins, Sinauer, Sunderland, MA

    Google Scholar 

  10. Dykhuizen DE, Dean AM (1990) Enzyme activity and fitness: evolution in solution. Trends Ecol Evol 5:257–262

    Article  PubMed  CAS  Google Scholar 

  11. Watt WB, Dean AM (2000) Molecular-functional studies of adaptive genetic variation in prokaryotes and eukaryotes. Ann Rev Genet 34:593–622

    Article  PubMed  CAS  Google Scholar 

  12. Dean AM, Thornton JW (2007) Mechanistic approaches to the study of evolution: the functional synthesis. Nat Rev Genet 8:675–688

    Article  PubMed  CAS  Google Scholar 

  13. Dykhuizen DE, Dean AM (2009) Experimental evolution from the bottom up. In: Garland T, Rose MR (eds.) Experimental evolution: concepts, methods, and applications of selection experiments. Univ Calif Press, Berkeley

    Google Scholar 

  14. Kacser H, Burnes JA (1979) Molecular democracy: who shares the controls? Trans Biochem Soc 7:1149–1160

    CAS  Google Scholar 

  15. Kacser H, Burnes JA (1981) The molecular basis of dominance. Genetics 97:639–666

    PubMed  CAS  Google Scholar 

  16. Weinreich DM, Delaney NF, DePristo MA et al (2006) Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312:111–114

    Article  PubMed  CAS  Google Scholar 

  17. Brown KM, DePristo MA, Weinreich DM et al (2009) Temporal constraints on the incorporation of regulatory mutants in evolutionary pathways. Mol Biol Evol 26:2455–2462

    Article  PubMed  CAS  Google Scholar 

  18. Hall BG, Hauer B (1993) Acquisition of new metabolic activities by microbial populations. In: Abelson JN, Simon MI, Zimmer EA et al (eds.) Molecular evolution: producing the biochemical data. Academic Press Inc, San Diego

    Google Scholar 

  19. Rosenblum EB, Rompler H, Schoneberg T et al (2009) Molecular and functional basis of phenotypic convergence in white lizards at White Sands. Proc Natl Acad Sci USA 107:2113–2117

    Article  PubMed  Google Scholar 

  20. Eanes WF (1999) Analysis of selection on enzyme polymorphisms. Ann Rev Ecol Systemat 30:301–326

    Article  Google Scholar 

  21. Zamer WE, Hoffman RJ (1989) Allozymes of glucose-6-phosphate isomerase differentially modulate pentose-shunt metabolism in the sea anemone Metridium senile, Proc Natl Acad Sci USA 86:2737–2741

    Article  PubMed  CAS  Google Scholar 

  22. Fromm HJ (1975) Initial rate enzyme kinetics. Springer, Berlin

    Book  Google Scholar 

  23. Zera AJ, Koehn RK, Hall JG (1985) Allozymes and biochemical adaptation. In: Kerkut GA, Gilbert LI (eds.) Comprehensive insect physiology: biochemistry and pharmacology. Pergamon, Oxford

    Google Scholar 

  24. Greaney GS, Somero GN (1980) Contributions of binding and catalytic rate constants to evolutionary modifications in Km of NADH for muscle type (M4) lactate dehydrogenase, J Comp Physiol B 137:115–121

    Article  CAS  Google Scholar 

  25. Place AR, Powers DA (1979) Genetic variation and relative catalytic efficiencies: lactate dehydrogenase-B allozymes of Fundulus heteroclitus. Proc Natl Acad Sci USA 76:2354–2358

    Article  PubMed  CAS  Google Scholar 

  26. Hall JG (1985) Temperature-related kinetic differentiation of glucosephosphate isomerase alleloenzymes isolated from the blue mussel, Mytilus edulis Biochem Genet 23:705–728

    Google Scholar 

  27. Eanes W, Katona L, Longtine M (1990) Comparison of in vitro and in vivo activities associated with G6PD allozyme polymorphims in Drosophila melanogaster. Genetics 125:845–853

    PubMed  CAS  Google Scholar 

  28. White MW, Mane SD, Richmond RC (1988) Studies of esterase 6 in Drosophila melanogaster. XVIII. Biochemical differences between the slow and fast allozymes. Mol Biol Evol 5:41–62

    Google Scholar 

  29. Hall JG, Koehn RK (1983) The evolution of catalytic efficiency and adaptive inference from steady-state kinetic data. Evol Biol 16:53–96

    Google Scholar 

  30. Watt WB (1983) Adaptation at specific loci. II. Demographic and biochemical elements in the maintenance of the Colias PGI polymorphism. Genetics 103:691–724

    Google Scholar 

  31. Watt WB, Donohue K, Carter PA (1996) Adaptation at specific loci. VI. Divergence vs. parallelism of polymorphic allozymes in molecular function and fitness component effects among Colias species (Lepidoptera; Pieridae). Mol Biol Evol 13:699–709

    CAS  Google Scholar 

  32. Chambers GK (1988) The Drosophila alcohol dehydrogenase gene-enzyme system, Advances Genet 25:39–107

    Article  CAS  Google Scholar 

  33. Wheat CW, Watt WB, Pollock DD et al (2006) From DNA to fitness differences: sequences and structures of adaptive variants of Colias phosphoglucose isomerase (PGI), Mol Biol Evol 23:499–512

    Article  PubMed  CAS  Google Scholar 

  34. Verrelli BC, Eanes WF (2001) The functional impact of Pgm amino acid polymorphism on glycogen content in Drosophila melanogaster. Genetics 159:201–210

    PubMed  CAS  Google Scholar 

  35. Verrelli BC, Eanes WF (2001) Clinal variation for amino acid polymorphisms at the Pgm locus in Drosophila melanogaster. Genetics 157:1649–1663

    PubMed  CAS  Google Scholar 

  36. Powers DA, Lauerman T, Crawford D et al (1991) Genetic mechanisms for adapting to a changing environment. Ann Rev Genet 25:629–659

    Article  PubMed  CAS  Google Scholar 

  37. Sezgin E, Duvernell D, Matzkin LM et al (2004) Single-locus latitudinal clines and relationship to temperate adaptation in metabolic genes and derived alleles in Drosophila melanogaster. Genetics 168:923–931

    Article  PubMed  CAS  Google Scholar 

  38. Winberg JO, Hovik R, McKinley-McKee JS (1985) The alcohol dehydrogenase alleloenzymes AdhS and AdhF from the fruitfly Drosophila melanogaster: an enzymatic rate assay to determine the active-site concentration. Biochem Genet 23:205–216

    Article  PubMed  CAS  Google Scholar 

  39. Labate J, Eanes WF (1992) Direct measurement of in vivo flux differences between electrophoretic variants of G6PD in Drosophila melanogaster. Genetics 132:783–787

    PubMed  CAS  Google Scholar 

  40. Laurie CC, Bridgham J, Choudhary M (1991) Associations between DNA sequence variation and variation in expression of the Adh gene in natural populations of Drosophila melanogaster. Genetics 129:489–499

    PubMed  CAS  Google Scholar 

  41. Laurie CC, Stam LF (1994) The effect of an intronic polymorphism on alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 138:379–385

    PubMed  CAS  Google Scholar 

  42. Stam LF, Laurie CC (1996) Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics 144:1559–1564

    PubMed  CAS  Google Scholar 

  43. Anderson SM, McDonald JF (1983) Biochem­ical and molecular analysis of naturally occurring Adh variants in Drosophila melanogaster. Proc Natl Acad Sci USA 80:4798–4802

    Article  PubMed  CAS  Google Scholar 

  44. Crawford DL, Powers DA (1992) Evolutionary adaptation to different thermal environments via transcriptional regulation. Mol Biol Evol 9:806–813

    PubMed  CAS  Google Scholar 

  45. Zera AJ, Harshman LG (2011) Intermediary metabolism and the biochemical-molecular basis of life history variation and trade-offs in two insect models. In: Flatt T, Heywood A, (eds.) Molecular mechanisms of life-history evolution. Oxford Univ Press, New York

    Google Scholar 

  46. Schilder RJ, Zera AJ, Black C et al (2011) The biochemical basis of life history adaptation: molecular and enzymological causes of NADP+-isocitrate dehydrogenase activity differences between morphs of Gryllus firmus that differ in lipid biosynthesis and life history. In Press

    Article  PubMed  CAS  Google Scholar 

  47. Fell D (1997) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  48. Eanes WF (2011) Molecular population genetics and selection in the glycolytic pathway. J Exp Biol 214:165–171

    Google Scholar 

  49. Jeffery C (1999) Moonlighting proteins. Trends Biochem Sci 24:8–11

    Article  PubMed  CAS  Google Scholar 

  50. Copley S (2003) Enzymes with extra talents: moonlighting functions and catalytic promiscuity. Curr Opin Chem Biol 7:265–272

    Article  PubMed  CAS  Google Scholar 

  51. Runck AM, Weber RE, Fago A et al (2010) Evolutionary and functional properties of a two-locus β-globin polymorphism in Indian house mice. Genetics 184:1121–1131

    Article  PubMed  CAS  Google Scholar 

  52. Eanes WF (1984) Viability interactions, in vivo activity and the G6PD polymorphism in Drosophila melanogaster. Genetics 106:95–107

    PubMed  CAS  Google Scholar 

  53. Cavener DR, Clegg MT (1981) Evidence for biochemical and physiological differences between enzyme genotypes in Drosophila melanogaster. Proc Natl Acad Sci USA 78:11666–11670

    Article  Google Scholar 

  54. Middleton RJ, Kacser H (1983) Enzyme variation, metabolic flux and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics 105:633–650

    PubMed  CAS  Google Scholar 

  55. Freriksen A, de Ruiter BLA, Scharloo W et al (1994) Drosophila alcohol dehydrogenase polymorphism and carbon-13 fluxes: opportunities for epistasis and natural selection. Genetics 137:1071–1078

    PubMed  CAS  Google Scholar 

  56. Zera AJ (2011) Microevolution of intermediary metabolism: evolutionary genetics meets metabolic biochemistry. J Exp Biol 214:179–190

    Google Scholar 

  57. Weber RE, Fago A (2004) Functional adaptation and its molecular basis in vertebrate hemoglobins, neuroglobins and cytoglobins. Respir Physiol Neurobiol 144:141–159

    Article  PubMed  CAS  Google Scholar 

  58. Weber R E (2007) High-altitude adaptations in vertebrate hemoglobins. Respir Physiol Neurobiol 158:132–142

    Article  PubMed  CAS  Google Scholar 

  59. Storz JF, Moriyama H (2008) Mechanisms of hemoglobin adaptation to high-altitude hypoxia. High Alt Med Biol 9:148–157

    Article  PubMed  CAS  Google Scholar 

  60. Storz JF, Scott GR, Cheviron ZA (2010) Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J Exp Biol 213:2565–2574

    Google Scholar 

  61. Storz JF, Runck AM, Sabatino SJ et al (2009) Evolutionary and functional insights into the mechanism underlying high-altitude adaptation of deer mouse hemoglobin. Proc Natl Acad Sci USA 106:14450–14455

    Article  PubMed  CAS  Google Scholar 

  62. Storz JF, Runck AM, Moriyama H et al (2010) Genetic differences in hemoglobin function between highland and lowland deer mice. J Exp Biol 213:2565–2574

    Article  PubMed  CAS  Google Scholar 

  63. Lozovsky E R, Chookajorn T, Brown KM et al (2009) Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc Natl Acad Sci USA 106:12025–12030

    Article  PubMed  CAS  Google Scholar 

  64. Newcomb RD, Campbell PM, Ollis DL et al (1997) A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proc Natl Acad Sci USA 94:7464–7468

    Article  PubMed  CAS  Google Scholar 

  65. Storz JF, Sabatino SJ, Hoffmann FG et al (2007) The molecular basis of high-altitude adaptation in deer mice. PloS Genet 3:e45

    Article  PubMed  Google Scholar 

  66. Storz JF, Kelly JK (2008) Effects of spatially varying selection on nucleotide diversity and linkage disequilibrium: insights from deer mouse globin genes. Genetics 180:367–379

    Article  PubMed  CAS  Google Scholar 

  67. Thornton JW (2004) Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 5:366–375

    Article  PubMed  CAS  Google Scholar 

  68. Weinreich DM, Watson RA, Chao L (2005) Sign epistasis and genetic constraint on evolutionary trajectories. Evolution 59:1165–1174

    PubMed  CAS  Google Scholar 

  69. Poelwijk FJ, Kiviet DJ, Weinreich DM et al (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445:383–386

    Article  PubMed  CAS  Google Scholar 

  70. Carneiro M, Hartl DL (2005) Adaptive landscapes and protein evolution. Proc Natl Acad Sci USA 107:1747–1751

    Article  Google Scholar 

  71. Haag ES, Molla MN (2005) Compensatory evolution of interacting gene products through multifunctional intermediates. Evolution 59:1620–1632

    PubMed  CAS  Google Scholar 

  72. Haag ES (2007) Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions. Genetica 129:45–55

    Article  PubMed  Google Scholar 

  73. Kondrashov AS, Sunyaev S, Kondrashov FA (2002) Dobzhansky-Muller incompatibilities in protein evolution. Proc Natl Acad Sci USA 99:14878–14883

    Article  PubMed  CAS  Google Scholar 

  74. Gao L, Zhang J (2003) Why are some human disease-associated mutations fixed in mice? Trends Genet 19:678–681

    Article  PubMed  CAS  Google Scholar 

  75. Kulathinal RJ, Bettencourt BR, Hartl DL (2004) Compensated deleterious mutations in insect genomes. Science 306:1553–1554

    Article  PubMed  CAS  Google Scholar 

  76. Poon A, Davis BH, Chao L (2005) The coupon collector and the suppressor mutation: estimating the number of compensatory mutations by maximum likelihood. Genetics 170:1323–1332

    Article  PubMed  CAS  Google Scholar 

  77. Davis BH, Poon AFY, Whitlock MC (2009) Compensatory mutations are repeatable and clustered within proteins. Proc Royal Soc B-Biol Sci 276:1823–1827

    Article  Google Scholar 

  78. Wang XJ, Minasov G, Shoichet BK (2002) Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J Mol Biol 320:85–95

    Article  PubMed  CAS  Google Scholar 

  79. DePristo MA, Weinreich DM, Hartl DL (2005) Missense meanderings in sequence space: a biophysical view of protein evolution, Nat Rev Genet 6:678–687

    Article  PubMed  CAS  Google Scholar 

  80. Sideraki V, Huang WZ, Palzkill T et al (2001) A secondary drug resistance mutation of TEM-1 beta-lactamase that suppresses misfolding and aggregation. Proc Natl Acad Sci USA 98:283–288

    Article  PubMed  CAS  Google Scholar 

  81. Feder ME, Watt WB (1992) Functional biology of adaptation. In: Berry RJ, Crawford TJ, Hewitt GM (eds.) Genes in ecology. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  82. Dalziel AC, Rogers SM, Schulte PM (2009) Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Mol Ecol 18:4997–5017

    Article  PubMed  CAS  Google Scholar 

  83. Rausher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169:7–21

    Article  CAS  Google Scholar 

  84. Streisfeld MA, Rausher MD (2010) Population genetics, pleiotropy, and the preferential fixation of mutations during adaptive evolution. Evolution 65:629–642

    Google Scholar 

  85. Eanes WF, Merritt TJS, Flowers JM et al (2006) Flux control and excess capacity in the enzymes of glycolysis and their relationship to flight metabolism in Drosophila melanogaster. Proc Natl Acad Sci USA 103:19413–19418

    Article  PubMed  CAS  Google Scholar 

  86. Eanes WF, Merritt TJS, Flowers JM et al (2009) Direct evidence that genetic variation in glycerol-3-phosphate and malate dehydrogenase genes (Gpdh and Mdh1) affects adult ethanol tolerance in Drosophila melanogaster. Genetics 181:607–614

    Article  PubMed  Google Scholar 

  87. Flowers JM, Sezgin E, Kumagai S et al (2007) Adaptive evolution of metabolic pathways in Drosophila. Mol Biol Evol 24:1347–1354

    Article  PubMed  CAS  Google Scholar 

  88. Greenberg AJ, Stockwell SR, Clark AG (2008) Evolutionary constraint and adaptation in the metabolic network of Drosophila. Mol Biol Evol 25:2537–2546

    Article  PubMed  CAS  Google Scholar 

  89. Merritt TJS., Kuczynski C, Sezgin E et al (2009) Quantifying interactions within the NADP(H) enzyme network in Drosophila melanogaster. Genetics 182:565–574

    Article  PubMed  CAS  Google Scholar 

  90. Merritt TJS, Sezgin E, Zhu CT et al (2006) Triglyceride pools, flight and activity variation at the Gpdh locus in Drosophila melanogaster. Genetics 172:293–304

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Z. Cheviron, W. Eanes, V. Orgogozo, and M. Rockman for helpful comments, and we thank R. Weber for providing Fig. 3. The authors acknowledge grants from the National Science Foundation grants (DEB-0614342 and IOS-0949931 to JFS; IOS-0516973 to AJZ) and the National Institutes of Health (R01 HL087216 and HL087216-S1 to JFS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay F. Storz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Storz, J.F., Zera, A.J. (2012). Experimental Approaches to Evaluate the Contributions of Candidate Protein-Coding Mutations to Phenotypic Evolution. In: Orgogozo, V., Rockman, M. (eds) Molecular Methods for Evolutionary Genetics. Methods in Molecular Biology, vol 772. Humana Press. https://doi.org/10.1007/978-1-61779-228-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-228-1_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-227-4

  • Online ISBN: 978-1-61779-228-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics