Skip to main content

Experimental Approaches to Evaluate the Contributions of Candidate Cis-regulatory Mutations to Phenotypic Evolution

  • Protocol
  • First Online:
Molecular Methods for Evolutionary Genetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 772))

Abstract

Elucidating the molecular bases by which phenotypic traits have evolved provides a glimpse into the past, allowing the characterization of genetic changes that cumulatively contribute to evolutionary innovations. Historically, much of the experimental attention has been focused on changes in protein-coding regions that can readily be identified by the genetic code for translating gene coding sequences into proteins. Resultantly, the role of noncoding sequences in trait evolution has remained more mysterious. In recent years, several studies have reached an unprecedented level of detail in describing how noncoding mutations in gene cis-regulatory elements contribute to morphological evolution. Based on these and other studies, we describe an experimental framework and some of the genetic and molecular methods to connect a particular cis-regulatory mutation to the evolution of any phenotypic trait.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carroll SB, Grenier JK, Weatherbee SD (2001) From DNA to Diversity. Blackwell Science, Malden

    Google Scholar 

  2. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  PubMed  CAS  Google Scholar 

  3. Protas ME, Hersey C, Kochanek D et al (2006) Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet 38:107–111

    Article  PubMed  CAS  Google Scholar 

  4. Colosimo PF, Hosemann KE, Balabhadra S et al (2005) Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science 307:1928–1933

    Article  PubMed  CAS  Google Scholar 

  5. Miller CT, Beleza S, Pollen AA et al (2007) cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131:1179–1189

    Article  PubMed  CAS  Google Scholar 

  6. Shapiro MD, Marks ME, Peichel CL et al (2004) Genetic and developmental basis of evolutionary pelvic reduction in threespine sticklebacks. Nature 428:717–723

    Article  PubMed  CAS  Google Scholar 

  7. Sucena E, Stern DL (2000) Divergence of larval morphology between Drosophila sechellia and its sibling species caused by cis-regulatory evolution of ovo/shaven-baby. Proc Natl Acad Sci USA 97:4530–4534

    Article  PubMed  CAS  Google Scholar 

  8. Wittkopp PJ, Williams BL, Selegue JE et al (2003) Drosophila pigmentation evolution: divergent genotypes underlying convergent phenotypes. Proc Natl Acad Sci USA 100:1808–1813

    Article  PubMed  CAS  Google Scholar 

  9. Sucena E, Delon I, Jones I et al (2003) Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism. Nature 424:935–938

    Article  PubMed  CAS  Google Scholar 

  10. Marcellini S, Simpson P (2006) Two or four bristles: functional evolution of an enhancer of scute in Drosophilidae. PLoS Biol. doi:10.1371/journal.pbio.0040386

    PubMed  Google Scholar 

  11. Gompel N, Prud’homme B, Wittkopp PJ et al (2005) Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila. Nature 433:481–487

    Article  PubMed  CAS  Google Scholar 

  12. Cohn MJ, Tickle C (1999) Developmental basis of limblessness and axial patterning in snakes. Nature 399:474–479

    Article  PubMed  CAS  Google Scholar 

  13. Averof M, Patel NH (1997) Crustacean appendage evolution associated with changes in Hox gene expression. Nature 388:682–686

    Article  PubMed  CAS  Google Scholar 

  14. Belting HG, Shashikant CS, Ruddle FH (1998) Modification of expression and cis-regulation of Hoxc8 in the evolution of diverged axial morphology. Proc Natl Acad Sci USA 95:2355–2360

    Article  PubMed  CAS  Google Scholar 

  15. Cretekos CJ, Wang Y, Green ED et al (2008) Regulatory divergence modifies limb length between mammals. Genes Dev 22:141–151

    Article  PubMed  CAS  Google Scholar 

  16. Abiola O, Angel JM, Avner P et al (2003) The nature and identification of quantitative trait loci: a community’s view. Nat Rev Genet 4:911–916

    PubMed  Google Scholar 

  17. Linnen CR, Kingsley EP, Jensen JD et al (2009) On the origin and spread of an adaptive allele in deer mice. Science 325:1095–1098

    Article  PubMed  CAS  Google Scholar 

  18. Martin JF, Bradley A, Olson EN (1995) The paired-like homeo box gene MHox is required for early events of skeletogenesis in multiple lineages. Genes Dev 9:1237–1249

    Article  PubMed  CAS  Google Scholar 

  19. Carroll SB (2005) Evolution at two levels: on genes and form. PLoS Biol. doi:10.1371/journal.pbio.0030245

    Google Scholar 

  20. Baker BS, Burtis K, Goralski T et al (1989) Molecular genetic aspects of sex determination in Drosophila melanogaster. Genome 31:638–645

    Article  PubMed  CAS  Google Scholar 

  21. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  PubMed  CAS  Google Scholar 

  22. Vella MC, Choi EY, Lin SY et al (2004) The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev 18:132–137

    Article  PubMed  CAS  Google Scholar 

  23. Marin VA, Evans TC (2003) Translational repression of a C. elegans Notch mRNA by the STAR/KH domain protein GLD-1. Development 130:2623–2632

    Article  PubMed  CAS  Google Scholar 

  24. Pare A, Lemons D, Kosman D et al (2009) Visualization of Individual Scr mRNAs during Drosophila Embryogenesis Yields Evidence for Transcriptional Bursting. Curr Biol 19:2037–2042

    Article  PubMed  CAS  Google Scholar 

  25. Rebeiz M, Pool JE, Kassner VA et al (2009) Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population. Science 326:1663–1667

    Article  PubMed  CAS  Google Scholar 

  26. Pool JE, Aquadro CF (2007) The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. Mol Ecol 16:2844–2851

    Article  PubMed  Google Scholar 

  27. Williams TM, Selegue JE, Werner T et al (2008) The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila. Cell 134:610–623

    Article  PubMed  CAS  Google Scholar 

  28. Chan YF, Marks ME, Jones FC et al (2010) Adaptive Evolution of Pelvic Reduction in Sticklebacks by Recurrent Deletion of a Pitx1 Enhancer. Science 327:302–305

    Article  PubMed  CAS  Google Scholar 

  29. Wittkopp PJ, Haerum BK, Clark AG (2004) Evolutionary changes in cis and trans gene regulation. Nature 430:85–88

    Article  PubMed  CAS  Google Scholar 

  30. Lettice LA, Heaney SJ, Purdie LA et al (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12:1725–1735

    Article  PubMed  CAS  Google Scholar 

  31. Wang X, Chamberlin HM (2002) Multiple regulatory changes contribute to the evolution of the Caenorhabditis lin-48 ovo gene. Genes Dev 16:2345–2349

    Article  PubMed  CAS  Google Scholar 

  32. Jeong S, Rokas A, Carroll SB (2006) Regulation of body pigmentation by the Abdominal-B Hox protein and its gain and loss in Drosophila evolution. Cell 125:1387–1399

    Article  PubMed  CAS  Google Scholar 

  33. Prud’homme B, Gompel N, Rokas A et al (2006) Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440:1050–1053

    Article  PubMed  Google Scholar 

  34. Bischof J, Maeda RK, Hediger M et al (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 104:3312–3317

    Article  PubMed  CAS  Google Scholar 

  35. Groth AC, Fish M, Nusse R et al (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782

    Article  PubMed  CAS  Google Scholar 

  36. Shirangi TR, Dufour HD, Williams TM et al (2009) Rapid evolution of sex pheromone-producing enzyme expression in Drosophila. PLoS Biol. doi:10.1371/journal.pbio.1000168

    PubMed  Google Scholar 

  37. Ludwig MZ, Bergman C, Patel NH et al (2000) Evidence for stabilizing selection in a eukaryotic enhancer element. Nature 403:564–567

    Article  PubMed  CAS  Google Scholar 

  38. Hare EE, Peterson BK, Iyer VN et al (2008) Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation. PLoS Genet. doi:10.1371/journal.pgen.1000106

    Google Scholar 

  39. McGregor AP, Orgogozo V, Delon I et al (2007) Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448:587–590

    Article  PubMed  CAS  Google Scholar 

  40. Tomoyasu Y, Wheeler SR, Denell RE et al (2005) Ultrabithorax is required for membranous wing identity in the beetle Tribolium castaneum. Nature 433:643–647

    Article  PubMed  CAS  Google Scholar 

  41. Tomoyasu Y, Arakane Y, Kramer KJ et al (2009) Repeated Co-options of Exoskeleton Formation during Wing-to-Elytron Evolution in Beetles. Curr Biol 19:2057–2065

    Article  PubMed  CAS  Google Scholar 

  42. Moczek AP, Rose DJ (2009) Differential recruitment of limb patterning genes during development and diversification of beetle horns. Proc Natl Acad Sci USA 106:8992–8997

    Article  PubMed  CAS  Google Scholar 

  43. Horn C, Wimmer EA (2000) A versatile vector set for animal transgenesis. Dev Genes Evol 210:630–637

    Article  PubMed  CAS  Google Scholar 

  44. Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216

    Article  PubMed  CAS  Google Scholar 

  45. Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution?. Evolution 62:2155–2177

    Article  PubMed  Google Scholar 

  46. Prabhakar S, Visel A, Akiyama JA et al (2008) Human-specific gain of function in a developmental enhancer. Science 321:1346–1350

    Article  PubMed  CAS  Google Scholar 

  47. Cande J, Goltsev Y, Levine MS et al (2009) Conservation of enhancer location in divergent insects. Proc Natl Acad Sci USA 106:14414–14419

    Article  PubMed  CAS  Google Scholar 

  48. Zinzen RP, Cande J, Ronshaugen M et al (2006) Evolution of the ventral midline in insect embryos. Dev Cell 11:895–902

    Article  PubMed  CAS  Google Scholar 

  49. Erives A, Levine M (2004) Coordinate enhancers share common organizational features in the Drosophila genome. Proc Natl Acad Sci USA 101:3851–3856

    Article  PubMed  CAS  Google Scholar 

  50. Ruvinsky I, Ruvkun G (2003) Functional tests of enhancer conservation between distantly related species. Development 130:5133–5142

    Article  PubMed  CAS  Google Scholar 

  51. Venken K J, He Y, Hoskins RA et al (2006) a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314:1747–1751

    Article  PubMed  CAS  Google Scholar 

  52. Lehoczky JA, Innis JW (2008) BAC transgenic analysis reveals enhancers sufficient for Hoxa13 and neighborhood gene expression in mouse embryonic distal limbs and genital bud. Evol Dev 10:421–432

    Article  PubMed  CAS  Google Scholar 

  53. Oberstein A, Pare A, Kaplan L et al (2005) Site-specific transgenesis by Cre-mediated recombination in Drosophila. Nat Methods 2:583–585

    Article  PubMed  CAS  Google Scholar 

  54. Sagai T, Amano T, Tamura M et al (2009) A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings. Development 136:1665–16674

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are eternally grateful for the mentorship and nurturing research environment provided by Sean B. Carroll. This environment allowed us to delve into the functional basis for gene regulatory evolution that serves as the methodological foundation for this chapter. We thank Héloïse Dufour, Matt Rockman, and Virginie Orgogozo for critical comments on this chapter. Mark Rebeiz is supported by start-up funds from the University of Pittsburgh. Thomas Williams is supported by start-up funding from the Department of Biology at the University of Dayton and the University of Dayton Research Institute (UDRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Rebeiz, M., Williams, T.M. (2012). Experimental Approaches to Evaluate the Contributions of Candidate Cis-regulatory Mutations to Phenotypic Evolution. In: Orgogozo, V., Rockman, M. (eds) Molecular Methods for Evolutionary Genetics. Methods in Molecular Biology, vol 772. Humana Press. https://doi.org/10.1007/978-1-61779-228-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-228-1_21

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-227-4

  • Online ISBN: 978-1-61779-228-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics