Skip to main content

Spectroscopic Imaging of the Mouse Brain

  • Protocol
  • First Online:
In vivo NMR Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 771))

  • 2397 Accesses

Abstract

Magnetic resonance spectroscopic imaging (MRSI) of the mouse brain reveals a wealth of metabolic information, not only from a single region of interest (single voxel), but spatially mapped over potentially the entire brain. However, MRSI requires challenging methods before the data can be obtained accurately. When applied in vivo, MRSI is generally combined with volume-selective spin perturbation to exclude artifact originating from outside the volume of interest. To obtain good magnetic field (B 0) uniformity at this volume, accurate B 0 shimming is required. Finally, the immensely large signals originating from water spins need to be suppressed to prevent sidebands that contaminate the spectra, or even saturate the dynamic range of the MR receiver. This chapter describes solutions for these challenges and ends with a rationale between single-voxel MRS versus MRSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tkac, I., Dubinsky, J.M., Keene, C.D., Gruetter, R., Low, W.C. (2007) Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy. J Neurochem 100(5), 1397–1406.

    Article  PubMed  CAS  Google Scholar 

  2. Heerschap, A., Kan, H.E., Nabuurs, C.I., Renema, W.K., Isbrandt, D., Wieringa, B. (2007) In vivo magnetic resonance spectroscopy of transgenic mice with altered expression of guanidinoacetate methyltransferase and creatine kinase isoenzymes. Subcell Biochem 46, 119–148. Review.

    Article  PubMed  Google Scholar 

  3. Maudsley, A.A., Domenig, C., Govind, V., Darkazanli, A., Studholme, C., Arheart, K., Bloomer, C. (2009) Mapping of brain metabolite distributions by volumetric proton MR spectroscopic imaging (MRSI). Magn Reson Med 61(3), 548–559.

    Article  PubMed  CAS  Google Scholar 

  4. Gruetter, R. (1993) Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med 29(6), 804–811.

    Article  PubMed  CAS  Google Scholar 

  5. Nixon, T.W., McIntyre, S., Rothman, D.L., de Graaf, R.A. (2008) Compensation of gradient-induced magnetic field perturbations. J Magn Reson 192(2), 209–217.

    Article  PubMed  CAS  Google Scholar 

  6. Kreis, R. (2004) Issues of spectral quality in clinical 1H-magnetic resonance spectroscopy and a gallery of artifacts. NMR Biomed 17(6), 361–381. Review.

    Article  PubMed  CAS  Google Scholar 

  7. Sutton, B.P., Ciobanu, L., Zhang, X., Webb, A. (2005) Parallel imaging for NMR microscopy at 14.1 Tesla. Magn Reson Med 54(1), 9–13.

    Article  PubMed  Google Scholar 

  8. Kumar, A., Edelstein, W.A., Bottomley, P.A. (2009) Noise figure limits for circular loop MR coils. Magn Reson Med 61(5), 1201–1209.

    Article  PubMed  Google Scholar 

  9. Buchthal, S.D., Thoma, W.J., Taylor, J.S., Nelson, S.J., Brown, T.R. (1989) In vivo T 1 values of phosphorus metabolites in human liver and muscle determined at 1.5 T by chemical shift imaging. NMR Biomed 2(5–6), 298–304.

    Article  PubMed  CAS  Google Scholar 

  10. Pohmann, R., von Kienlin, M. (2001) Accurate phosphorus metabolite images of the human heart by 3D acquisition-weighted CSI. Magn Reson Med 45(5), 817–826.

    Article  PubMed  CAS  Google Scholar 

  11. Posse, S., DeCarli, C., Le Bihan, D. (1994) Three-dimensional echo-planar MR spectroscopic imaging at short echo times in the human brain. Radiology 192(3), 733–738.

    PubMed  CAS  Google Scholar 

  12. Otazo, R., Tsai, S.Y., Lin, F.H., Posse, S. (2007) Accelerated short-TE 3D proton echo-planar spectroscopic imaging using 2D-SENSE with a 32-channel array coil. Magn Reson Med 58(6), 1107–1116.

    Article  PubMed  CAS  Google Scholar 

  13. Haase, A., Frahm, J., Matthaei, D., Hänicke, W., Bomsdorf, H., Kunz, D., Tischler, R. (1986) MR imaging using stimulated echoes (STEAM). Radiology 160(3), 787–790.

    PubMed  CAS  Google Scholar 

  14. Bottomley, P.A. (1984) U.S.-Patent, 4, 480, 228:0.

    Google Scholar 

  15. Klomp, D.W., van der Graaf, M., Willemsen, M.A., van der Meulen, Y.M., Kentgens, A.P., Heerschap, A. (2004) Transmit/receive headcoil for optimal 1H MR spectroscopy of the brain in paediatric patients at 3T. MAGMA 17(1), 1–4.

    Article  PubMed  CAS  Google Scholar 

  16. Shinnar, M., Leigh, J.S. (1993) Inversion of the Bloch equation. J Chem Phys 98(8), 6121–6128.

    Article  CAS  Google Scholar 

  17. Garwood, M., DelaBarre, L. (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153(2), 155–177.

    Article  PubMed  CAS  Google Scholar 

  18. Henning, A., Fuchs, A., Murdoch, J.B., Boesiger, P. (2009) Slice-selective FID acquisition, localized by outer volume suppression (FIDLOVS) for (1)H-MRSI of the human brain at 7 T with minimal signal loss. NMR Biomed 22(7), 683–696.

    Article  PubMed  CAS  Google Scholar 

  19. Ogg, R.J., Kingsley, P.B., Taylor, J.S. (1994) WET, a T 1- and B 1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 104(1), 1–10.

    Article  PubMed  CAS  Google Scholar 

  20. Tkác, I., Starcuk, Z., Choi, I.Y., Gruetter, R. (1999) In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn Reson Med 41(4), 649–656.

    Article  PubMed  Google Scholar 

  21. Star-Lack, J., Nelson, S.J., Kurhanewicz, J., Huang, L.R., Vigneron, D.B. (1997) Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 38(2), 311–321.

    Article  PubMed  CAS  Google Scholar 

  22. Mescher, M., Tannus, A., Johnson, M.O., Garwood, M. (1996) Solvent suppression using selective echo dephasing. J Magn Res A 123, 226–229.

    Article  CAS  Google Scholar 

  23. in ’t Zandt, H.J., Renema, W.K., Streijger, F., Jost, C., Klomp, D.W., Oerlemans, F., Van der Zee, C.E., Wieringa, B., Heerschap, A. (2004) Cerebral creatine kinase deficiency influences metabolite levels and morphology in the mouse brain: a quantitative in vivo 1H and 31P magnetic resonance study. J Neurochem 90(6), 1321–1330.

    Article  PubMed  Google Scholar 

  24. Matson, G.B. (1994) An integrated program for amplitude-modulated RF pulse generation and re-mapping with shaped gradients. Magn Reson Imaging 12, 1205–1225.

    Article  PubMed  CAS  Google Scholar 

  25. Koch, K.M., Brown, P.B., Rothman, D.L., de Graaf, R.A. (2006) Sample-specific diamagnetic and paramagnetic passive shimming. J Magn Reson 182(1), 66–74.

    Article  PubMed  CAS  Google Scholar 

  26. Naressi, A., Couturier, C., Devos, J.M., Janssen, M., Mangeat, C., de Beer, R., Graveron-Demilly, D. (2001) Java-based graphical user interface for the MRUI quantitation package. MAGMA 12, 141–152.

    Article  PubMed  CAS  Google Scholar 

  27. Provencher, S.W. (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4), 260–264.

    Article  PubMed  CAS  Google Scholar 

  28. http://mrs.cpmc.columbia.edu/3dicsi.html.

Download references

Acknowledgments

The authors would like to thank Professor Arend Heerschap and Professor Peter Luijten for initiating and financing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis W.J. Klomp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Klomp, D.W., Renema, W.K.J. (2011). Spectroscopic Imaging of the Mouse Brain. In: Schröder, L., Faber, C. (eds) In vivo NMR Imaging. Methods in Molecular Biology, vol 771. Humana Press. https://doi.org/10.1007/978-1-61779-219-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-219-9_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-218-2

  • Online ISBN: 978-1-61779-219-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics