Skip to main content

Hyperpolarized Molecules in Solution

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 771))

Abstract

Hyperpolarization is a technique to enhance the nuclear polarization and thereby increase the available signal in magnetic resonance (MR). This chapter provides an introduction to the concept of hyperpolarization as well as an overview of dynamic nuclear polarization (DNP) and para-hydrogen induced polarization (PHIP), two methods used to generate hyperpolarized molecules in aqueous solution.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Edelstein, W.A., Glover, G.H., Hardy C.J., and Redington, R.W. (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn. Reson. Med. 3, 604–618.

    Article  PubMed  CAS  Google Scholar 

  2. Albert, M.S., Cates, G.D., Driehuys, B., et al. (1994) Biological magnetic resonance imaging using laser-polarized (129)Xe. Nature 370, 199–201.

    Article  PubMed  CAS  Google Scholar 

  3. Middleton, H., Black, R.D., Saam, B., et al. (1995) MR imaging with hyperpolarized (3)He gas. Magn. Reson. Med. 33, 271–275.

    Article  PubMed  CAS  Google Scholar 

  4. Kauczor, H.U., Hofmann, D., Kreitner, K.F., et al. (1996) Normal and abnormal pulmonary ventilation: Visualization at hyperpolarized He-3 MR imaging. Radiology 201, 564–568.

    PubMed  CAS  Google Scholar 

  5. Golman, K., Axelsson, O., Jóhannesson, H., Månsson, S., Olofsson, C., and Petersson, J.S. (2001) Parahydrogen-induced polarization in imaging: Subsecond (13)C angiography. Magn. Reson. Med. 46, 1–5.

    Article  PubMed  CAS  Google Scholar 

  6. Ardenkjær-Larsen, J.H., Fridlund, B., Gram, A., et al. (2003) Increase in signal-to-noise ration of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA 100, 10158–10163.

    Article  PubMed  Google Scholar 

  7. Ardenkjaer-Larsen, J.H., Axelsson, O., Golman, K., Wistrand, L.-G., Hansson, G., Leunbach, I., Petersson, S. (1998) PCT WO99/35508, priority date 05.01.1998.

    Google Scholar 

  8. Wolber, J., Ellner, F., Fridlund, B., et al. (2004) Generating highly polarized nuclear spins in solution using dynamic nuclear polarization, Nucl. Instr. Meth. Phys. Res. 526, 173–181.

    Article  CAS  Google Scholar 

  9. Overhauser, A. (1953) Polarization of nuclei in metals. Phys. Rev. 92, 411–415.

    Article  CAS  Google Scholar 

  10. Carver, T.R. and Slichter, C.P. (1953) Polarization of nuclear spins in metals. Phys. Rev. 92, 212–213.

    Article  CAS  Google Scholar 

  11. Abragam, A. (1955) Overhauser effect in non-metals. Phys. Rev. 98, 1729–1735.

    Article  CAS  Google Scholar 

  12. Jeffries, C.D. (1957) Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys. Rev. 108, 164–165.

    Article  Google Scholar 

  13. Abragam, A. and Goldman, M. (1982) Nuclear Magnetism: Order and Disorder. Oxford, UK, Clarendon Press.

    Google Scholar 

  14. de Boer, W.D., Borghini, M., Morimoto, K., Niinikoski, T.O., and Udo, F. (1974) Dynamic polarization of protons, deuterons, and C-13 nuclei – thermal contact between nuclear spins and an electron spin-spin interaction reservoir. J. Low Temp. Phys. 15, 249–267.

    Article  Google Scholar 

  15. de Boer, W.D. and Niinikoski, T.O. (1974) Dynamic proton polarization in propanediol below 0.5 K. Nucl. Instr. Meth. 114, 495–498.

    Article  Google Scholar 

  16. Heckmann, J., Meyer, W., Radtke, E., and Reicherz, G. (2006) Electron spin resonance and its implication on the maximum nuclear polarization of deuterated solid target materials. Phys. Rev. 74, Art. No. 134418.

    Article  Google Scholar 

  17. Benjamin, P.S., Fuminori H., Matsumoto, K.-I., Simone, N.L., Cook, J.A., Krishna, M.C., and Mitchell, J.B. (2007) The chemistry and biology of nitroxide compounds. Free Radical Biol. Med. 42, 1632–1650.

    Article  Google Scholar 

  18. Eaton, S.S., Eaton, G.R., and Berliner, L. (2005), Part A: Free radicals, metals, medicine, and physiology. Part B: Methodology, instrumentation, and dynamics, Series: Biological magnetic resonance. J. Biomed. EPR. 23/24.

    Google Scholar 

  19. Thaning, M. (2004) PCT WO2006/011811, priority date 30.07.2004.

    Google Scholar 

  20. Andersson, S., Radner, F., Rydbeck, A., Servin, R., and Wistrand, L.-G. (1995) United States patent US5728370, June 6, 1995.

    Google Scholar 

  21. Jagadeeswar Reddy, T., Iwama, T., Halpern, H.J., and Rawal, V.H. (1998) General synthesis of persistent trityl radicals for EPR imaging of biological systems. J. Org. Chem. 67, 4635–4639.

    Article  Google Scholar 

  22. Bowman, M.K., Mailer, C., and Halpern, H.J (2005) The solution conformation of triarylmethyl radicals. J. Magn. Reson. 172, 254–267.

    Article  PubMed  CAS  Google Scholar 

  23. Hu, K.-N., Bajaj, V.S., Rosay, M., and Griffin R.G. (2007) High-frequency dynamic nuclear polarization using mixtures of TEMPO and trityl radicals. J. Chem. Phys. 126, 044512.

    Article  PubMed  Google Scholar 

  24. Ardenkjaer-Larsen, J.H., Macholl, S., and Johannesson, H. (2008) Dynamic nuclear polarization with trityls at 1.2 K. Appl. Magn. Reson. 34, 509–522.

    Article  CAS  Google Scholar 

  25. Duijvestijn, M.J., Wind, R.A., and Smidt, J. (1986) Quantitative investigation of the dynamic nuclear polarization effect by fixed paramagnetic centra of abundant and rare spins in solids at room temperature. Physica B.&C. 138, 147–170.

    Article  CAS  Google Scholar 

  26. Bajaj, V.S., Hornstein, M.K., Kreischer, K.E., et al. (2007) 250 GHz CW gyrotron oscillator for dynamic nuclear polarization in biological solid state NMR. J. Mag. Res. 189, 251–279.

    Article  CAS  Google Scholar 

  27. Hornstein, M.K., Bajaj, V.S., Kreischer, K.E., Griffin, R.G., and Temkin R.J. (2005) CW second harmonic results at 460 GHz of a gyrotron oscillator – For sensitivity enhanced NMR. The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics. 2, 437–438.

    Article  Google Scholar 

  28. Comment, A., van den Brandt, B., Uffmann, K., et al. (2007) Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner. Conc. Magn. Reson. 31, 255–269.

    Google Scholar 

  29. Jannin, S., Comment, A., Kurdzesau, F., Konter, J.A., Hautle, P., van den Brandt, B., and van der Klink, J.J. (2008) A 140 GHz prepolarizer for dissolution dynamic nuclear polarization. J. Chem. Phys. 128, 241102.

    Article  PubMed  CAS  Google Scholar 

  30. Jóhannesson, H., Macholl, S., and Ardenkjaer-Larsen, J.H., (2008) Dynamic nuclear polarization of [1-13C]pyruvic acid at 4.6 tesla. J. Magn. Reson. 197, 167–175.

    Article  PubMed  Google Scholar 

  31. Urbahn J., Ardenkjaer-Larsen J.H., Leach A., Stautner W., Zhang T., and Clarke N., (2008) A closed cycle helium sorption pump system and its use in making hyperpolarized compounds for MR Imaging. International Cryogenic Engineering Conference 22 and International Cryogenic Materials Conference 2008, Seoul, Korea.

    Google Scholar 

  32. Goertz, S. (2002) Spintemperatur und magnetische Resonanz verdünnter elektronischer Systeme – ein Weg zur Optimierung polarisierter Festkörper-Targetmaterialien, Ruhr-Universität Bochum, Habilitationsschrift, April 15, 2002.

    Google Scholar 

  33. Jam, J.A., Dey, S., Muralidharan, L., Leach, A.M., and Ardenkjaer-Larsen, J.H. (2009) Jet impingment melting with vaporization: A numerical study. (2009) Proceedings of the ASME Summer Heat Transfer Conference 2008, 2, 559–567.

    Google Scholar 

  34. Mishkovsky, M., Eliav, U., Navon, G., and Frydman, L. (2009) Nearly 106-fold enhancements in intermolecular 1H double-quantum NMR experiments by nuclear hyperpolarization. J. Magn. Reson. 200, 142–146.

    Article  PubMed  CAS  Google Scholar 

  35. Van Heeswijk, R.B., Uffmann, K., Kurdzesau, F., et al. (2007) Towards detection of sub-micromolar contrast agent concentration with hyperpolarized 6-lithium. Abstract 1318, Proceedings of International Society for Magnetic Resonance in Medicine, Berlin, Germany.

    Google Scholar 

  36. Kuhn, L.T., Bommerich, U., and Bargon, J. (2006) Transfer of parahydrogen-induced hyperpolarization to (19)F. J. Phys. Chem. 110, 3521–3526.

    CAS  Google Scholar 

  37. Eykyn, T.R., Reynolds, S., Gabellieri, C., and Leach, M.O. (2007) Hyperpolarised N-15 of choline – potential for observing phospholipid metabolism in cancer. Proc. Intl. Soc. Mag. Reson. Med. 15, 1319.

    Google Scholar 

  38. Reynolds, S. and Patel, H. (2008) Monitoring the solid-state polarization of 13C, 15N, 2H, 29Si and 31P. Appl. Magn. Reson. 34, 495–508.

    Article  CAS  Google Scholar 

  39. Merritt, M.E., Harrison, C., Kovacs, Z., Kshirsagar, P., Malloy, C.R., and Sherry, A.D. (2007) Hyperpolarized (89)Y offers the potential of direct imaging of metal ions in biological systems by magnetic resonance. J. Am. Chem. Soc. 129, 12942–12943.

    Article  PubMed  CAS  Google Scholar 

  40. Ardenkjær-Larsen, J.H., Hansson, L., Johannesson, H., Servin, R., and Wistrand, L.-G. (2002) PCT WO2004/037296, priority date 25.10.2002.

    Google Scholar 

  41. Golman, K., in’t Zandt, R., and Thaning, M., (2006) Real-time metabolic imaging. PNAS. 103, 11270–11275.

    Article  PubMed  CAS  Google Scholar 

  42. Schroeder, M.A., Atherton, H.J., Ball, D.R., Cole, M.A., Heather, L.C., Griffin, J.L., Clarke, K., Radda, G.K., and Tyler, D.J. (2009) Real-time assessment of Krebs cycle metabolism using hyperpolarized 13C magnetic resonance spectroscopy, The FASEB J. 23.

    Google Scholar 

  43. Chen, A.P., Kurhanewicz, J., Bok, R., Xu, D., Joun, D., Zhang, V., Nelson, S.J., Hurd, R.E., and Vigneron, D.B. (2008) Feasibility of using hyperpolarized [1-13C]lactate as a substrate for in vivo metabolic 13C MRSI studies. Magn. Reson. Imaging 26, 721–726.

    Article  PubMed  CAS  Google Scholar 

  44. Gallagher, F.A., Kettunen, M.I., Day, S.E., Hu, D.-E., Ardenkjær-Larsen, J.H., in’t Zandt, R., Jensen, P.R., Karlsson, M., Golman, K., Lerche, M.H., and Brindle, K.M. (2008) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453, 940–943.

    Article  PubMed  CAS  Google Scholar 

  45. Karlsson, M., in’t Zandt, R., Jensen, P.R., Hansson, G., Månsson, S., Gisselsson, A., and Lerche, M. (2008) Metabolic reactions studied with 13C-DNP-NMR at physiologically relevant conditions in vitro and in vivo. Experimental Nuclear Magnetic Resonance Conference, Pacific Grove, CA, USA.

    Google Scholar 

  46. Jensen, P.R., in’t Zandt, R., Karlsson, M., Hansson, G., Månsson, S., Gisselsson, A., and Lerche, M. (2008) Acetyl-CoA and acetyl-carnitine show organ specific distribution in mice after injection of DNP hyperpolarized 13C1-acetate. Abstract 892 Proceedings of the International Society for Magnetic Resonance in Medicine, Toronto, Canada.

    Google Scholar 

  47. Gallagher, F.A., Kettunen, M.I., Day, S.E., Lerche, M., and Brindle K.M. (2008) 13C MR Spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn. Reson. Med. 60, 253–257.

    Article  PubMed  CAS  Google Scholar 

  48. Gallagher, F.A., Kettunen, M.I., Day, S.E., Hu, D., in‘t Zandt, R., Jensen, P.R., Karlsson, M., Golman, K. Lerche, M., and Brindle, K.M. (2007) Real-time visualization of hyperpolarized 13C-labeled glutamine metabolism in human hepatoma cells using magnetic resonance spectroscopy. Proc. RSNA. 357.

    Google Scholar 

  49. Jensen, P.R., Karlsson, M., Meier, S., Duus, J.Ø., and Lerche, M.H. (2009) Hyperpolarized amino acids for in vivo assays of transaminase activity. Chem. Eur. J. 15, 10010–10012.

    Article  CAS  Google Scholar 

  50. Wilson, D.M., Hurd, R.E., Keshari, K., Van Criekinge, M., Chen, A.P., Nelson, S.J., Vigneron, D.B., and Kurhanewicz, J. (2009) Generation of hyperpolarized substrates by secondary labeling with [1,1-13C] acetic anhydride. PNAS 106, 5503–5507.

    Article  PubMed  CAS  Google Scholar 

  51. Keshari, K.R., Wilson, D.M., Chen, A.P., Bok, R., Larson, P.E.Z., Hu, S., Van Criekinge, M., Macdonald, J.M., Vigneron, D.B., and Kurhanewicz, J. (2009) Hyperpolarized [2-13C]-Fructose: A hemiketal DNP substrate for in vivo metabolic imaging. J. Am. Chem. Soc. online Oct 27.

    Google Scholar 

  52. Bowers, C.R. and Weitekamp, D.P. (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys. Rev. Lett. 57, 2645–2648.

    Article  PubMed  CAS  Google Scholar 

  53. Bowers, C.R. and Weitekamp, D.P. (1987) Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J. Am. Chem. Soc. 109, 5541–5542.

    Article  CAS  Google Scholar 

  54. Pravica, M.G. and Weitekamp D.P. (1998) Net NMR alignment by adiabatic transport of para-hydrogen addition products to high magnetic field. Chem. Phys. Lett. 145, 255–258.

    Article  Google Scholar 

  55. Golman, K., Ardenkjær-Larsen, J.H., Svensson, J., Axelsson, O., Hansson, G., Johannesson, H., Leunbach, I., Månsson, S., Petersson, J.S., Pettersson, G., Servin, R., and Wistrand, L.G. (2002) (13)C-angiography. Acad. Radiol. 9, 507–510.

    Article  Google Scholar 

  56. Golman, K, Olsson, L.E., Axelsson, O., Månsson, S., Karlsson, M., and Petersson, J.S. (2003) Molecular imaging using hyperpolarized (13)C. The Br. J. Radiol. 76, 118–127.

    Article  Google Scholar 

  57. Jóhannesson, H., Axelsson, O., and Karlsson, M, (2004) Transfer of para-hydrogen spin order into polarization by diabatic field cycling. C. R. Physique 5, 315–324.

    Article  Google Scholar 

  58. Goldman, M., Jóhannesson, H., Axelsson, O., and Karlsson, M. (2005) Hyperpolarization of 13C through order transfer from para-hydrogen: A new contrast agent for MRI. Magn. Reson. Imaging 23, 153–157.

    Article  PubMed  CAS  Google Scholar 

  59. Goldman, M. and Jóhannesson, H. (2005) Conversion of a proton pair para order into 13C polarization by rf irradiation, for use in MRI. C. R. Physique 6, 575–581.

    Article  CAS  Google Scholar 

  60. Goldman, M., Jóhannesson, H., Axelsson, O., and Karlsson M. (2006) Design and implementation of 13C hyperpolarization from para-hydrogen, for new MRI contrast agents. C.R. Chimie 9, 357–363.

    Article  CAS  Google Scholar 

  61. Atkinson, K.D., Cowley, M.J., Duckett, S.B., et al. (2009) Para-Hydrogen induced polarization without incorporation of para-hydrogen into the analyte. Inorg. Chem. 48, 663–670.

    Article  PubMed  CAS  Google Scholar 

  62. Koptyug, I.V., Kovtunov, K.V., Burt, S.R., et al. (2007) para-Hydrogen-induced polarization in heterogeneous hydrogenation reactions. J. Am. Chem. Soc. 129, 5580–5586.

    Article  PubMed  CAS  Google Scholar 

  63. Balu, A.M., Duckett, S.B., and Luque, R. (2009) Para-hydrogen induced polarization effects in liquid phase hydrogenations catalyzed by supported metal nanoparticles. Dalton Trans. 26, 5074–5076.

    Article  PubMed  Google Scholar 

  64. Johansson, E., Olsson, L.E., Månsson, S., Petersson, J.S., et al. (2004) Perfusion assessment with bolus differentiation: A technique applicable to hyperpolarized tracers. Magn. Reson. Med. 52, 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  65. Magnusson, P., Johansson, E., Månsson, S., Petersson, J.S., et al. (2007) Passive Catheter tracking during interventional MRI using hyperpolarized (13)C. Magn. Reson. Med. 57, 1140–1147.

    Article  PubMed  Google Scholar 

  66. Bhattacharya, P., Chekmenev, E.Y., Perman, W.H., et al. (2007) Towards hyperpolarized 13C-succinate imaging of brain cancer. J. Magn. Reson. 186, 150–155.

    Article  PubMed  CAS  Google Scholar 

  67. Carravatta, M., Johannessen, O.G., and Levitt, M.H. (2004) Beyond the T 1 limit: Singlet nuclear spin states in low magnetic fields. Phys. Rev. Lett. 92, 153003–153011.

    Article  Google Scholar 

  68. Carravatta, M. and Levitt, M.H. (2005) Theory of long-lived nuclear spin states in solution nuclear magnetic resonance. I. Singlet states in low magnetic field. J. Chem. Phys. 122, 1–14.

    Google Scholar 

  69. Pileio, G. and Levitt, M.H. (2009) Theory of long-lived nuclear spin states in solution nuclear magnetic resonance. II. Singlet spin locking. J. Chem. Phys. 130, art. no. 214501.

    Article  PubMed  Google Scholar 

  70. Petersson, S., Axelsson, O., and Jóhannesson, H. (2003) Patent US7346384.

    Google Scholar 

  71. Chekmenev, E.Y., Norton, A.V., Weitekamp, D.P., and Bhattacharya, P. (2009) Hyperpolarized 1H NMR employing low γ nucleus for spin polarization storage. J. Am. Chem. Soc. 131, 3164–3165.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Henrik Ardenkjaer-Larsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ardenkjaer-Larsen, J.H., Jóhannesson, H., Petersson, J.S., Wolber, J. (2011). Hyperpolarized Molecules in Solution. In: Schröder, L., Faber, C. (eds) In vivo NMR Imaging. Methods in Molecular Biology, vol 771. Humana Press. https://doi.org/10.1007/978-1-61779-219-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-219-9_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-218-2

  • Online ISBN: 978-1-61779-219-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics