Skip to main content

Hyperpolarized Noble Gases as Contrast Agents

  • Protocol
  • First Online:
In vivo NMR Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 771))

Abstract

Hyperpolarized noble gases (3He and 129Xe) can provide NMR signal enhancements of 10,000 to 100,000 times that of thermally polarized gases and have shown great potential for applications in lung magnetic resonance imaging (MRI) by greatly enhancing the sensitivity and contrast. These gases obtain a highly polarized state by employing a spin exchange optical pumping technique. In this chapter, the underlying physics of spin exchange optical pumping for production of hyperpolarized noble gases is explained and the basic components and procedures for building a polarizer are described. The storage and delivery strategies of hyperpolarized gases for in vivo imaging are discussed. Many of the problems that are likely to be encountered in practical experiments and the corresponding detailed approaches to overcome them are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raftery, D., Long, H., Meersmann, T., Grandinetti, P. J., Reven, L., Pines, A. (1991) High-field NMR of adsorbed xenon polarized by laser pumping. Phys. Rev. Lett. 66, 584–587.

    Article  PubMed  CAS  Google Scholar 

  2. Albert, M. S., Cates, G. D., Driehuys, B., Happer, W., Saam, B., Springer, C. S., Jr., Wishnia, A. (1994) Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370, 199–201.

    Article  PubMed  CAS  Google Scholar 

  3. Happer, W. (1972) Optical pumping. Rev. Mod. Phys. 44, 169–249.

    Article  CAS  Google Scholar 

  4. Kastler, A. (1950) Quelques suggestions concernant la production optique et la détection optique d’une inégalité de population des niveaux de quantifigation spatiale des atomes. Application à l’expérience de Stern et Gerlach et à la résonance magnétique. J. Phys. Radium 11, 255–265.

    Article  CAS  Google Scholar 

  5. Walker, T. G., Happer, W. (1997) Spin-exchange optical pumping of noble-gas nuclei. Rev. Mod. Phys. 69, 629–642.

    Article  CAS  Google Scholar 

  6. Zeng, X., Wu, Z., Call, T., Miron, E., Schreiber, D., Happer, W. (1985) Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and 129Xe nuclei in alkali-metal-noble-gas van der Waals molecules. Phys. Rev. A 31, 260–278.

    Article  PubMed  CAS  Google Scholar 

  7. Appelt, S., Ben-Amar Baranga, A., Erickson, C. J., Romalis, M. V., Young, A. R., Happer, W. (1998) Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev. A 58, 1412–1439.

    Article  CAS  Google Scholar 

  8. Zhou, X., Sun, X., Luo, J., Zeng, X., Liu, M., Zhan, M. (2004) Production of hyperpolarized 129Xe gas without nitrogen by optical pumping at 133Cs D2 line in flow system. Chin. Phys. Lett. 21, 1501–1503.

    Article  CAS  Google Scholar 

  9. Patton, B. (2007) NMR Studies of Angular Momentum Transfer and Nuclear Spin Relaxation. Ph.D. dissertation, Princeton University.

    Google Scholar 

  10. Moller, H. E., Chen, X. J., Saam, B., Hagspiel, K. D., Johnson, G. A., Altes, T. A., de Lange, E. E., Kauczor, H. U. (2002) MRI of the lungs using hyperpolarized noble gases. Magn. Reson. Med. 47, 1029–1051.

    Article  PubMed  Google Scholar 

  11. Tooker, A. C., Hong, K. S., McKinstry, E. L., Costello, P., Jolesz, F. A., Albert, M. S. (2003) Distal airways in humans: dynamic hyperpolarized 3He MR imaging – feasibility. Radiology 227, 575–579.

    Article  PubMed  Google Scholar 

  12. Wild, J. M., Paley, M. N., Kasuboski, L., Swift, A., Fichele, S., Woodhouse, N., Griffiths, P. D., van Beek, E. J. (2003) Dynamic radial projection MRI of inhaled hyperpolarized 3He gas. Magn. Reson. Med. 49, 991–997.

    Article  PubMed  Google Scholar 

  13. Fain, S. B., Panth, S. R., Evans, M. D., Wentland, A. L., Holmes, J. H., Korosec, F. R., O’Brien, M. J., Fountaine, H., Grist, T. M. (2006) Early emphysematous changes in asymptomatic smokers: detection with 3He MR imaging. Radiology 239, 875–883.

    Article  PubMed  Google Scholar 

  14. Conradi, M. S., Saam, B. T., Yablonskiy, D. A., Woods, J. C. (2006) Hyperpolarized He-3 and perfluorocarbon gas diffusion MRI of lungs. Prog. Nucl. Magn. Reson. Spectr. 48, 63–83.

    Article  CAS  Google Scholar 

  15. Driehuys, B., Walker, J., Pollaro, J., Cofer, G. P., Mistry, N., Schwartz, D., Johnson, G. A. (2007) 3He MRI in mouse models of asthma. Magn. Reson. Med. 58, 893–900.

    Article  PubMed  CAS  Google Scholar 

  16. Stupar, V., Canet-Soulas, E., Gaillard, S., Alsaid, H., Beckmann, N., Cremillieux, Y. (2007) Retrospective cine He-3 ventilation imaging under spontaneous breathing conditions: a non-invasive protocol for small-animal lung function imaging. NMR Biomed. 20, 104–112.

    Article  PubMed  Google Scholar 

  17. Hopkins, S. R., Levin, D. L., Emami, K., Kadlecek, S., Yu, J., Ishii, M., Rizi, R. R. (2007) Advances in magnetic resonance imaging of lung physiology. J. Appl. Physiol. 102, 1244–1254.

    Article  PubMed  Google Scholar 

  18. Patz, S., Muradian, I., Hrovat, M. I., Ruset, I. C., Topulos, G., Covrig, S. D., Frederick, E., Hatabu, H., Hersman, F. W., Butler, J. P. (2008) Human pulmonary imaging and spectroscopy with hyperpolarized 129Xe at 0.2 T. Acad. Radiol. 15, 713–727.

    Article  PubMed  Google Scholar 

  19. Matsuoka, S., Patz, S., Albert, M. S., Sun, Y., Rizi, R. R., Gefter, W. B., Hatabu, H. (2009) Hyperpolarized gas MR Imaging of the lung: current status as a research tool. J. Thorac. Imaging 24, 181–188.

    Article  PubMed  Google Scholar 

  20. Abragam, A. (1961) The Principles of Nuclear Magnetism. Oxford University Press, London.

    Google Scholar 

  21. Hausser, K. H., Stehlik, D. (1968) Dynamic nuclear polarization in liquids. Adv. Magn. Reson. 3, 79–139.

    CAS  Google Scholar 

  22. Muller-Wamuth, W., Meise-Gresch, K. (1983) Molecular motions and interactions as studied by dynamic nuclear polarization (DNP) in free radical solutions. Adv. Magn. Reson. 11, 1–45.

    Google Scholar 

  23. Wind, R. A., Duijvestijn, M. J., Vanderlugt, C., Manenschijn, A., Vriend, J. (1985) Applications of dynamic nuclear polarization in C-13 NMR in solids. Prog. Nucl. Magn. Reson. Spectr. 17, 33–67.

    Article  CAS  Google Scholar 

  24. rdenkjaer-Larsen, J. H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M. H., Servin, R., Thaning, M., Golman, K. (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. USA. 100, 10158–10163.

    Article  Google Scholar 

  25. Golman, K., Ardenkjaer-Larsen, J. H., Petersson, J. S., Mansson, S., Leunbach, I. (2003) Molecular imaging with endogenous substances. Proc. Natl. Acad. Sci. USA. 100, 10435–10439.

    Article  PubMed  CAS  Google Scholar 

  26. Maly, T., Debelouchina, G. T., Bajaj, V. S., Hu, K. N., Joo, C. G., Mak-Jurkauskas, M. L., Sirigiri, J. R., van der Wel, P. C. A., Herzfeld, J., Temkin, R. J., et al. (2008) Dynamic nuclear polarization at high magnetic fields. J. Chem. Phys. 128, 052211.

    Google Scholar 

  27. Bowers, C. R., Weitekamp, D. P. (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys. Rev. Lett. 57, 2645–2648.

    Article  PubMed  CAS  Google Scholar 

  28. Natterer, J., Bargon, J. (1997) Parahydrogen induced polarization. Prog. Nucl. Magn. Reson. Spectr. 31, 293–315.

    Article  Google Scholar 

  29. Bouchard, L. S., Burt, S. R., Anwar, M. S., Kovtunov, K. V., Koptyug, I. V., Pines, A. (2008) NMR imaging of catalytic hydrogenation in microreactors with the use of para-hydrogen. Science 319, 442–445.

    Article  PubMed  CAS  Google Scholar 

  30. Altes, T. A., Powers, P. L., Knight-Scott, J., Rakes, G., Platts-Mills, T. A., de Lange, E. E., Alford, B. A., Mugler, J. P., III, Brookeman, J. R. (2001) Hyperpolarized 3He MR lung ventilation imaging in asthmatics: preliminary findings. J. Magn. Reson. Imaging 13, 378–384.

    Article  PubMed  CAS  Google Scholar 

  31. Jacob, R. E., Morgan, S. W., Saam, B. (2002) He-3 spin exchange cells for magnetic resonance imaging. J. Appl. Phys. 92, 1588–1597.

    Article  CAS  Google Scholar 

  32. Driehuys, B., Cates, G. D., Miron, E., Sauer, K., Walter, D. K., Happer, W. (1996) High-volume production of laser-polarized Xe-129. Appl. Phys. Lett. 69, 1668–1670.

    Article  CAS  Google Scholar 

  33. Ruset, I. C., Ketel, S., Hersman, F. W. (2006) Optical pumping system design for large production of hyperpolarization 129Xe. Phys. Rev. Lett. 96, 053002-1-053002-4.

    Article  Google Scholar 

  34. Schrank, G., Ma, Z., Schoeck, A., Saam, B. (2009) Characterization of a low-pressure high-capacity 129Xe flow-through polarizer. Phys. Rev. A 80, 063424.

    Article  Google Scholar 

  35. Colegrove, F. D., Schearer, L. D., Walters, G. K. (1963) Polarization of He3 gas by optical pumping. Phys. Rev. 132, 2561–2572.

    Article  CAS  Google Scholar 

  36. Eckert, G., Heil, W., Meyerhoff, M., Otten, E. W., Surkau, R., Werner, M., Leduc, M., Nacher, P. J., Schearer, L. D. (1992) A dense polarized He-3 target based on compression of optically pumped gas. Nucl. Instr. Meth. A 320, 53–65.

    Article  Google Scholar 

  37. Becker, J., Heil, W., Krug, B., Leduc, M., Meyerhoff, M., Nacher, P. J., Otten, E. W., Prokscha, T., Schearer, L. D., Surkau, R. (1994) Study of Mechanical Compression of Spin-Polarized He-3 Gas. Nucl. Instr. Meth. A 346, 45–51.

    Article  CAS  Google Scholar 

  38. Stoltz, E., Meyerhoff, M., Bigelow, N., Leduc, M., Nacher, P. J., Tastevin G. (1996) High nuclear polarizatoin in 3He and 3He-4He gas mixture by optical pumping with a laser diode. Appl. Phys. B 63, 629–633.

    CAS  Google Scholar 

  39. Becker, J., Bermuth, J., Ebert, M., Grossmann, T., Heil, W., Hofmann, D., Humblot, H., Leduc, M., Otten, E. W., Rohe, D., et al. (1998) Interdisciplinary experiments with polarized He-3. Nucl. Instr. Meth. A 402, 327–336.

    Article  CAS  Google Scholar 

  40. Pavlovskaya, G. E., Cleveland, Z. I., Stupic, K. F., Basaraba, R. J., Meersmann, T. (2005) Hyperpolarized krypton-83 as a contrast agent for magnetic resonance imaging. Proc. Natl. Acad. Sci. USA. 102, 18275–18279.

    Article  PubMed  CAS  Google Scholar 

  41. Goodson, B. M. (2002) Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials, and organisms. J. Magn. Reson. 155, 157–216.

    Article  PubMed  CAS  Google Scholar 

  42. Cherubinia, A., Bifone, A. (2003) Hyperpolarised xenon in biology. Prog. Nucl. Magn. Reson. Spectrosc. 42, 1–30.

    Article  Google Scholar 

  43. Oros, A. M., Shah, N. J. (2004) Hyperpolarized xenon in NMR and MRI. Phys. Med. Biol. 49, R105–R153.

    Article  PubMed  CAS  Google Scholar 

  44. Swanson, S. D., Rosen, M. S., Coulter, K. P., Welsh, R. C., Chupp, T. E. (1999) Distribution and dynamics of laser-polarized 129Xe magnetization in vivo. Magn. Reson. Med. 42, 1137–1145.

    Article  PubMed  CAS  Google Scholar 

  45. Ruppert, K., Brookeman, J. R., Hagspiel, K. D., Mugler, J. P., III (2000) Probing lung physiology with xenon polarization transfer contrast (XTC). Magn. Reson. Med. 44, 349–357.

    Article  PubMed  CAS  Google Scholar 

  46. Driehuys, B., Cofer, G. P., Pollaro, J., Mackel, J. B., Hedlund, L. W., Johnson, G. A. (2006) Imaging alveolar-capillary gas transfer using hyperpolarized 129Xe MRI. Proc. Natl. Acad. Sci. USA. 103, 18278–18283.

    Article  PubMed  Google Scholar 

  47. Swanson, S. D., Rosen, M. S., Agranoff, B. W., Coulter, K. P., Welsh, R. C., Chupp, T. E. (1997) Brain MRI with laser-polarized 129Xe. Magn. Reson. Med. 38, 695–698.

    Article  PubMed  CAS  Google Scholar 

  48. Duhamel, G., Choquet, P., Grillon, E., Leviel, J. L., Decorps, M., Ziegler, A., Constantinesco, A. (2002) Global and regional cerebral blood flow measurements using NMR of injected hyperpolarized xenon-129. Acad. Radiol. 9, S498–S500.

    Article  PubMed  Google Scholar 

  49. Kilian, W., Seifert, F., Rinneberg, H. (2004) Dynamic NMR spectroscopy of hyperpolarized 129Xe in human brain analyzed by an uptake model. Magn. Reson. Med. 51, 843–847.

    Article  PubMed  CAS  Google Scholar 

  50. Schroder, L., Lowery, T. J., Hilty, C., Wemmer, D. E., Pines, A. (2006) Molecular imaging using a targeted magnetic resonance hyperpolarized biosensor. Science 314, 446–449.

    Article  PubMed  Google Scholar 

  51. Zhou, X., Mazzanti, M. L., Chen, J. J., Tzeng, Y. S., Mansour, J. K., Gereige, J. D., Venkatesh, A. K., Sun, Y., Mulkern, R. V., Albert, M. S. (2008) Reinvestigating hyperpolarized 129Xe longitudinal relaxation time in the rat brain with noise considerations. NMR Biomed. 21, 217–225.

    Article  PubMed  CAS  Google Scholar 

  52. Zhou, X., Graziani, D., Pines, A. (2009) Hyperpolarized xenon NMR and MRI signal amplification by gas extraction. Proc. Natl. Acad. Sci. USA. 106, 16903–16906.

    Article  PubMed  CAS  Google Scholar 

  53. Driehuys, B., Moller, H. E., Cleveland, Z. I., Pollaro, J., Hedlund, L. W. (2009) Pulmonary perfusion and xenon gas exchange in rats: MR imaging with intravenous injection of hyperpolarized 129Xe. Radiology 252, 386–393.

    PubMed  Google Scholar 

  54. Zhou, X., Sun, Y., Mazzanti, M. L., Henninger, N., Mansour, J. K., Fisher, M., Albert, M. S. (2011) MRI of stroke using hyperpolarized 129Xe. NMR Biomed. 24, 170–175.

    Google Scholar 

  55. Babcock, E., Nelson, I., Kadlecek, S., Driehuys, B., Anderson, L. W., Hersman, F. W., Walker, T. G. (2003) Hybrid spin-exchange optical pumping 3He. Phys. Rev. Lett. 91, 123003.

    Article  PubMed  Google Scholar 

  56. Hedlund, L. W., Cofer, G. P., Owen, S. J., Allan, J. G. (2000) MR-compatible ventilator for small animals: computer-controlled ventilation for proton and noble gas imaging. Magn. Reson. Imaging 18, 753–759.

    Article  PubMed  CAS  Google Scholar 

  57. Harris, R. K. (1996) Nuclear spin properties and conventions for chemical shifts. Encyclopedia of Nuclear Magnetic Resonance, eds. Grant, D. M., Harris, R. K. pp. 3301–3314. Wiley, Chichester, UK.

    Google Scholar 

  58. Abraham, M. H., Kamlet, M. J., Taft, R. W., Doherty, R. M., Weathersby, P. K. (1985) Solubility properties in polymers and biological media. 2. The correlation and prediction of the solubilities of nonelectrolytes in biological tissues and fluids. J. Med. Chem. 28, 865–870.

    Google Scholar 

  59. Patyal, B. R., Gao, J. H., Williams, R. F., Roby, J., Saam, B., Rockwell, B. A., Thomas, R. J., Stolarski, D. J., Fox, P. T. (1997) Longitudinal relaxation and diffusion measurements using magnetic resonance signals from laser-hyperpolarized 129Xe nuclei. J. Magn Reson. 126, 58–65.

    Article  PubMed  CAS  Google Scholar 

  60. Bock, M. (1997) Simultaneous T 2* and diffusion measurements with 3He. Magn Reson. Med. 38, 890–895.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks Dominic Graziani and Xianping Sun for proof reading and helpful suggestions for the manuscript. The work was supported by the 100 talents program of the Chinese Academy of Sciences, the innovative methods program of the Ministry of Science and Technology of China, and the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy under Contract DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhou, X. (2011). Hyperpolarized Noble Gases as Contrast Agents. In: Schröder, L., Faber, C. (eds) In vivo NMR Imaging. Methods in Molecular Biology, vol 771. Humana Press. https://doi.org/10.1007/978-1-61779-219-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-219-9_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-218-2

  • Online ISBN: 978-1-61779-219-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics