Skip to main content

Physical Basics of NMR

  • Protocol
  • First Online:
In vivo NMR Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 771))

Abstract

This chapter gives a short introduction to the physical and technical basics of nuclear magnetic resonance. It describes the formation of the NMR signal from the generation of the magnetization to the detection in the spectrometer. The behaviour of nuclear spins in a magnetic field is shown based on classical dynamics. The formation of the free induction decay and the spin echoes, as well as the concepts of longitudinal and transverse relaxation are explained. The basics of signal acquisition and reconstruction are presented. The concept of chemical shift is introduced with its application in NMR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 209.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabi, I. I. (1937) Space quantization in a gyrating magnetic field. Phys Rev 51, 0652–0654.

    Article  CAS  Google Scholar 

  2. Rabi, I. I., Zacharias, J. R., Millman, S., Kusch, P. (1938) A new method of measuring nuclear magnetic moment. Phys Rev 53, 318–318.

    Article  CAS  Google Scholar 

  3. Purcell, E. M., Torrey, H. C., Pound, R. V. (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69, 37–38.

    Article  CAS  Google Scholar 

  4. Bloch, F., Hansen, W. W., Packard, M. (1946) Nuclear Induction. Phys Rev 69, 127.

    Article  Google Scholar 

  5. Proctor, W. G., Yu, F. C. (1950) The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys Rev 77, 717.

    Article  CAS  Google Scholar 

  6. Dickinson, W. C. (1950) Dependence of the F-19 nuclear resonance position on chemical compound. Phys Rev 77, 736–737.

    Article  CAS  Google Scholar 

  7. Hahn, E. L. (1950) Spin echoes. Phys Rev 80, 580–594.

    Article  Google Scholar 

  8. Ernst, R. R., Anderson, W. A. (1966) Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instr 37, 93–102.

    Article  CAS  Google Scholar 

  9. Aue, W. P., Bartholdi, E., Ernst, R. R. (1976) 2-dimensional spectroscopy – application to nuclear magnetic resonance. J Chem Phys 64, 2229–2246.

    Article  CAS  Google Scholar 

  10. Lauterbur, P. C. (1973) Image formation by induced local interactions – examples employing nuclear magnetic resonance. Nature 242, 190–191.

    Article  CAS  Google Scholar 

  11. Mansfield, P., Grannell, P. K. (1973) NMR Diffraction in Solids. J Phys C Solid State Phys 6, L422–L426.

    Article  CAS  Google Scholar 

  12. Damadian, R. (1971) Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153.

    Article  PubMed  CAS  Google Scholar 

  13. Hashemi, R. H., Bradley, W. G., Lisanti, C. J. (2004) MRI: the basics. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  14. Weishaupt, D., Köchli V. D., Marincek, B. (2006) How does MRI work? An introduction to the physics and function of magnetic resonance imaging. Berlin, New York: Springer.

    Google Scholar 

  15. Levitt, M. H. (2001) Spin dynamics: Basics of nuclear magnetic resonance. Chichester, New York: Wiley.

    Google Scholar 

  16. Ernst, R. R., Bodenhausen, G., Wokaun, A. (1987) Principles of nuclear magnetic resonance in one and two dimensions. Oxford: Oxford University Press.

    Google Scholar 

  17. Abragam, A. (1961) The prinicples of nuclear magnetism. Oxford: Clarendon Press.

    Google Scholar 

  18. Slichter, C. P. (1990) Principles of magnetic resonance. Berlin, New York: Springer.

    Google Scholar 

  19. Edelstein, W. A., Glover, G. H., Hardy, C. J., Redington, R. W. (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3, 604–618.

    Article  PubMed  CAS  Google Scholar 

  20. Hoult, D. I., Lauterbur, P. C. (1979) Sensitivity of the zeugmatographic experiment involving human samples. J Magn Reson 34, 425–433.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Pohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pohmann, R. (2011). Physical Basics of NMR. In: Schröder, L., Faber, C. (eds) In vivo NMR Imaging. Methods in Molecular Biology, vol 771. Humana Press. https://doi.org/10.1007/978-1-61779-219-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-219-9_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-218-2

  • Online ISBN: 978-1-61779-219-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics