Skip to main content

Embryological Manipulations in Zebrafish

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 770))

Abstract

Due to the powerful combination of genetic and embryological techniques, the teleost fish Danio rerio has emerged in the last decade as an important model organism for the study of embryonic development. It is relatively easy to inject material such as mRNA or synthetic oligonucleotides to reduce or increase the expression of a gene product. Changes in gene expression can be analyzed at the level of mRNA, by whole-mount in situ hybridization, or at the level of protein, by immunofluorescence. It is also possible to quantitatively analyze protein levels by Western and immunoprecipitation. Cell behavior can be analyzed in detail by cell transplantation and by fate mapping. Because a large number of mutations have been identified in recent years, these methods can be applied in a variety of contexts to provide a deep understanding of gene function that is often more difficult to achieve in other vertebrate model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., and Schilling, T. F. (1995) Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310.

    Article  PubMed  CAS  Google Scholar 

  2. Zhang, Y., McCulloch, K., and Malicki, J. (2009) Lens transplantation in zebrafish and its application in the analysis of eye mutants. J. Vis. Exp. 28, pii:.1258.

    CAS  Google Scholar 

  3. Mizuno, T., Shinya, M., and Takeda, H. (1999) Cell and tissue transplantation in zebrafish embryos. Methods Mol. Biol. 127, 15–28.

    Article  PubMed  CAS  Google Scholar 

  4. David, N. B. and Rosa, F. M. (2001) Cell autonomous commitment to an endodermal fate and behaviour by activation of Nodal signalling. Development 128, 3937–3947.

    PubMed  CAS  Google Scholar 

  5. Dovey, M. C. and Zon, L. I. (2009) Defining cancer stem cells by xenotransplantation in zebrafish. Methods Mol. Biol. 568, 1–5.

    Article  PubMed  Google Scholar 

  6. Hagos, E. G. and Dougan, S. T. (2007) Time-dependent patterning of the mesoderm and endoderm by Nodal signals in zebrafish. BMC Dev. Biol. 7, 22.

    Article  PubMed  CAS  Google Scholar 

  7. Hagos, E. G., Fan, X., and Dougan, S. T. (2007) The role of maternal Activin-like signals in zebrafish embryos. Dev. Biol. 309, 245–258.

    Article  PubMed  CAS  Google Scholar 

  8. Thisse, B., Heyer, V., Lux, A., Alunni, V., Degrave, A., Seiliez, I., Kirchner, J., Parkhill, J. P., and Thisse, C. (2004) Spatial and temporal expression of the zebrafish genome by large-scale in situ hybridization screening. Methods Cell. Biol. 77, 505–519.

    Article  PubMed  CAS  Google Scholar 

  9. Ekker, S. C. (2000) Morphants: a new systematic vertebrate functional genomics approach. Yeast 17, 302–306.

    Google Scholar 

  10. Nasevicius, A. and Ekker, S. C. (2000) Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet. 26, 216–220.

    Article  PubMed  CAS  Google Scholar 

  11. Fjose, A., Ellingsen, S., Wargelius, A., and Seo, H. C. (2001) RNA interference: mechanisms and applications. Biotechnol. Annu. Rev. 7, 31–57.

    Article  PubMed  CAS  Google Scholar 

  12. Schier, A. F. and Giraldez, A. J. (2006) MicroRNA function and mechanism: insights from zebra fish. Cold Spring Harb. Symp. Quant. Biol. 71, 195–203.

    Article  PubMed  CAS  Google Scholar 

  13. Liu, W. Y., Wang, Y., Sun, Y. H., Wang, Y. P., Chen, S. P., and Zhu, Z. Y. (2005) Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev. Growth Differ. 47, 323–331.

    Article  PubMed  CAS  Google Scholar 

  14. Zhao, Z., Cao, Y., Li, M., and Meng, A. (2001) Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev. Biol. 229, 215–223.

    Article  PubMed  CAS  Google Scholar 

  15. Pelegri, F. (2003) Maternal factors in zebrafish development. Dev. Dyn. 228, 535–554.

    Article  PubMed  CAS  Google Scholar 

  16. Jesuthasan, S. and Stahle, U. (1997) Dynamic microtubules and specification of the zebrafish embryonic axis. Curr. Biol. 7, 31–42.

    Article  PubMed  CAS  Google Scholar 

  17. Solnica-Krezel, L. and Driever, W. (1994) Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development 120, 2443–2455.

    PubMed  CAS  Google Scholar 

  18. Fan, X., Hagos, E. G., Xu, B., Sias, C., Kawakami, K., Burdine, R. D., and Dougan, S. T. (2007) Nodal signals mediate interactions between the extra-embryonic and embryonic tissues in zebrafish. Dev. Biol. 310, 363–378.

    Article  PubMed  CAS  Google Scholar 

  19. Ho, C. Y., Houart, C., Wilson, S. W., and Stainier, D. Y. (1999) A role for the extraembryonic yolk syncytial layer in patterning the zebrafish embryo suggested by properties of the hex gene. Curr. Biol. 9, 1131–1134.

    Article  PubMed  CAS  Google Scholar 

  20. Erter, C. E., Solnica-Krezel, L., and Wright, C. V. (1998) Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. Dev. Biol. 204, 361–372.

    Article  PubMed  CAS  Google Scholar 

  21. Feldman, B., Gates, M. A., Egan, E. S., Dougan, S. T., Rennebeck, G., Sirotkin, H. I., Schier, A. F., and Talbot, W. S. (1998) Zebrafish organizer development and germ-layer formation require Nodal- related signals. Nature 395, 181–185.

    Article  PubMed  CAS  Google Scholar 

  22. Little, S. C. and Mullins, M. C. (2009) Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat. Cell Biol. 11, 637–643.

    Article  PubMed  CAS  Google Scholar 

  23. Ikegami, R., Hunter, P., and Yager, T. D. (1999) Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo. Dev. Biol. 209, 409–433.

    Article  PubMed  CAS  Google Scholar 

  24. Ciruna, B., Weidinger, G., Knaut, H., Thisse, B., Thisse, C., Raz, E., and Schier, A. F. (2002) Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proc. Natl. Acad. Sci. USA 99, 14919–14924.

    Article  PubMed  CAS  Google Scholar 

  25. Ho, R. K. and Kimmel, C. B. (1993) Commitment of cell fate in the early zebrafish embryo. Science 261, 109–111.

    Article  PubMed  CAS  Google Scholar 

  26. Kimmel, C. B., Warga, R. M., and Schilling, T. F. (1990) Origin and organization of the zebrafish fate map. Development 108, 581–594.

    PubMed  CAS  Google Scholar 

  27. Woo, K., Shih, J., and Fraser, S. E. (1995) Fate maps of the zebrafish embryo. Curr. Opin. Genet. Dev. 5, 439–443.

    Article  PubMed  CAS  Google Scholar 

  28. Warga, R. M. and Nusslein-Volhard, C. (1999) Origin and development of the zebrafish endoderm. Development 126, 827–838.

    PubMed  CAS  Google Scholar 

  29. Kimmel, C. B. and Law, R. D. (1985) Cell lineage of zebrafish blastomeres. III. Clonal analyses of the blastula and gastrula stages. Dev. Biol. 108, 94–101.

    Article  PubMed  CAS  Google Scholar 

  30. Kimmel, C. B. and Warga, R. M. (1988) Cell lineage and developmental potential of cells in the zebrafish embryo. Trends Genet. 4, 68–74.

    Article  PubMed  CAS  Google Scholar 

  31. Dale, L. and Slack, J. M. (1987) Fate map for the 32-cell stage of Xenopus laevis. Development 99, 527–551.

    PubMed  CAS  Google Scholar 

  32. Fraser, S. E. (1996) Iontophoretic dye labeling of embryonic cells. Methods Cell Biol. 51, 147–160.

    Article  PubMed  CAS  Google Scholar 

  33. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A. (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656.

    Article  PubMed  CAS  Google Scholar 

  34. Hatta, K., Tsujii, H., and Omura, T. (2006) Cell tracking using a photoconvertible fluorescent protein. Nat. Protoc. 1, 960–967.

    Article  PubMed  CAS  Google Scholar 

  35. Thazhath, R., Liu, C., and Gaertig, J. (2002) Polyglycylation domain of beta-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena. Nat. Cell Biol. 4, 256–259.

    Article  PubMed  CAS  Google Scholar 

  36. Webster, D. M., Teo, C. F., Sun, Y., Wloga, D., Gay, S., Klonowski, K. D., Wells, L., and Dougan, S. T. (2009) O-GlcNAc modifications regulate cell survival and epiboly during zebrafish development. BMC Dev. Biol. 9, 28.

    Article  PubMed  CAS  Google Scholar 

  37. Zalik, S. E., Lewandowski, E., Kam, Z., and Geiger, B. (1999) Cell adhesion and the actin cytoskeleton of the enveloping layer in the zebrafish embryo during epiboly. Biochem. Cell Biol. 77, 527–542.

    Article  PubMed  CAS  Google Scholar 

  38. Eisen, J. S. and Smith, J. C. (2008) Controlling morpholino experiments: don’t stop making antisense. Development 135, 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  39. Link, V., Shevchenko, A., and Heisenberg, C. P. (2006) Proteomics of early zebrafish embryos. BMC Dev. Biol. 6, 1.

    Article  PubMed  CAS  Google Scholar 

  40. Brown, J. L., Snir, M., Noushmehr, H., Kirby, M., Hong, S. K., Elkahloun, A. G., and Feldman, B. (2008) Transcriptional profiling of endogenous germ layer precursor cells identifies dusp4 as an essential gene in zebrafish endoderm specification. Proc. Natl. Acad. Sci. USA 105, 12337–12342.

    Article  PubMed  CAS  Google Scholar 

  41. Schroeder, M. M. and Gard, D. L. (1992) Organization and regulation of cortical microtubules during the first cell cycle of Xenopus eggs. Development 114, 699–709.

    PubMed  CAS  Google Scholar 

  42. Gelsema, W. J., de Ligny, C. L., Luten, J. B., and Vossenberg, F. G. (1975) The use of the Cerenkov effect in the counting of beta- and gamma- emitting radionuclides. Int. J. Appl. Radiat. Isot. 26, 443–450.

    Article  PubMed  CAS  Google Scholar 

  43. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  44. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76–85.

    Article  PubMed  CAS  Google Scholar 

  45. Kozlowski, D. J., Murakami, T., Ho, R. K., and Weinberg, E. S. (1997) Regional cell movement and tissue patterning in the zebrafish embryo revealed by fate mapping with caged fluorescein. Biochem. Cell Biol. 75, 551–562.

    Article  PubMed  CAS  Google Scholar 

  46. Feldman, B., Dougan, S. T., Schier, A. F., and Talbot, W. S. (2000) Nodal-related signals establish mesendodermal fate and trunk neural identity in zebrafish. Curr. Biol. 10, 531–534.

    Article  PubMed  CAS  Google Scholar 

  47. Thisse, C. and Thisse, B. (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69.

    Article  PubMed  CAS  Google Scholar 

  48. Oxtoby, E. and Jowett, T. (1993) Cloning of the zebrafish krox-20 gene (krx-20) and its expression during hindbrain development. Nucleic Acids Res. 21, 1087–1095.

    Article  PubMed  CAS  Google Scholar 

  49. Talbot, W. S., Trevarrow, B., Halpern, M. E., Melby, A. E., Farr, G., Postlethwait, J. H., Jowett, T., Kimmel, C. B., and Kimelman, D. (1995) A homeobox gene essential for zebrafish notochord development. Nature 378, 150–157.

    Article  PubMed  CAS  Google Scholar 

  50. Weinberg, E. S., Allende, M. L., Kelly, C. S., Abdelhamid, A., Murakami, T., Andermann, P., Doerre, O. G., Grunwald, D. J., and Riggleman, B. (1996) Developmental regulation of zebrafish MyoD in wild-type, no tail and spadetail embryos. Development 122, 271–280.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ben Feldman for providing Kaede protein, Joeseph Frankel for providing the 12G10 antibody (available from the Developmental Studies Hybridoma Bank, developed under the auspices of NICHD and maintained by the University of Iowa), Jim Lauderdale for advice on the protocol for WISH followed by immunohistochemistry, and Rebecca Ball for helpful comments on the manuscript. S.T.D. is a Georgia Cancer Coalition distinguished investigator. Work in the Dougan lab is supported by the American Cancer Society (RSGDDC-112979).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott T. Dougan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sun, Y., Wloga, D., Dougan, S.T. (2011). Embryological Manipulations in Zebrafish. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 770. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-210-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-210-6_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-209-0

  • Online ISBN: 978-1-61779-210-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics