Skip to main content

Manipulating and Imaging the Early Xenopus laevis Embryo

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 770))

Abstract

Over the past half century, the Xenopus laevis embryo has become a popular model system for studying vertebrate early development at molecular, cellular, and multicellular levels. The year-round availability of easily fertilized eggs, the embryo’s large size and rapid development, and the hardiness of both adults and offspring against a wide range of laboratory conditions provide unmatched advantages for a variety of approaches, particularly “cutting and pasting” experiments, to explore embryogenesis. There is, however, a common perception that the Xenopus embryo is intractable for microscope work, due to its store of large, refractile yolk platelets and abundant cortical pigmentation. This chapter presents easily adapted protocols to surmount, and in some cases take advantage of, these optical properties to facilitate live-cell microscopic analysis of commonly used experimental manipulations of early Xenopus embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wallingford, J. B., Liu, K. J., and Zheng, Y. (2010) Xenopus. Curr. Biol. 20, R263–R264.

    Article  PubMed  CAS  Google Scholar 

  2. Nieuwkoop, P. D. and Faber, J. (1994) Normal Table of Xenopus laevis (Daudin): A Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of Metamorphosis. Garland Pub, New York, NY.

    Google Scholar 

  3. Kao, K. R. and Elinson, R. P. (1988) The Entire Mesodermal Mantle Behaves as Spemann’s Organizer in Dorsoanterior Enhanced Xenopus laevis Embryos. Dev. Biol. 127, 64–77.

    Article  PubMed  CAS  Google Scholar 

  4. Moody, S. A. (1987) Fates of the Blastomeres of the 16-Cell Stage Xenopus Embryo. Dev. Biol. 119, 560–578.

    Article  PubMed  CAS  Google Scholar 

  5. Moody, S. A. (1987) Fates of the Blastomeres of the 32-Cell-Stage Xenopus Embryo. Dev. Biol. 122, 300–319.

    Article  PubMed  CAS  Google Scholar 

  6. Dale, L. and Slack, J. M. W. (1987) Fate Map for the 32-Cell Stage of Xenopus laevis. Development 99, 527–551.

    PubMed  CAS  Google Scholar 

  7. Keller, R. E. (1975) Vital Dye Mapping of the Gastrula and Neurula of Xenopus laevis. I. Prospective Areas and Morphogenetic Movements of the Superficial Layer. Dev. Biol. 42, 222–241.

    Article  PubMed  CAS  Google Scholar 

  8. Keller, R. E. (1976) Vital Dye Mapping of the Gastrula and Neurula of Xenopus laevis. II. Prospective Areas and Morphogenetic Movements of the Deep Layer. Dev. Biol. 51, 118–137.

    Article  PubMed  CAS  Google Scholar 

  9. Keller, R. and Danilchik, M. V. (1988) Regional Expression, Pattern and Timing of Convergence and Extension During Gastrulation of Xenopus laevis. Development 103, 193–209.

    PubMed  CAS  Google Scholar 

  10. Davidson, L. A., Dzamba, B. D., Keller, R., and Desimone, D. W. (2008) Live Imaging of Cell Protrusive Activity, and Extracellular Matrix Assembly and Remodeling During Morphogenesis in the Frog, Xenopus laevis. Dev. Dyn. 237, 2684–2692.

    Article  PubMed  Google Scholar 

  11. Wallingford, J. B., Sater, A. K., Uzman, J. A., and Danilchik, M. V. (1997) Inhibition of Morphogenetic Movement During Xenopus Gastrulation by Injected Sulfatase: Implications for Anteroposterior and Dorsoventral Axis Formation. Dev. Biol. 187, 224–235.

    Article  PubMed  CAS  Google Scholar 

  12. Fredieu, J. R., Cui, Y., Maier, D., Danilchik, M. V., and Christian, J. L. (1997) Xwnt-8 and Lithium Can Act Upon Either Dorsal Mesodermal or Neurectodermal Cells to Cause a Loss of Forebrain in Xenopus Embryos. Dev. Biol. 186, 100–114.

    Article  PubMed  CAS  Google Scholar 

  13. Danilchik, M. V. and Brown, E. E. (2008) Membrane Dynamics of Cleavage Furrow Closure in Xenopus laevis. Dev. Dyn. 237, 565–579.

    Article  PubMed  Google Scholar 

  14. Wallingford, J. B., Rowning, B. A., Vogeli, K. M., Rothbacher, U., Fraser, S. E., and Harland, R. M. (2000) Dishevelled Controls Cell Polarity During Xenopus Gastrulation. Nature 405, 81–85.

    Article  PubMed  CAS  Google Scholar 

  15. Park, T. J., Gray, R. S., Sato, A., Habas, R., and Wallingford, J. B. (2005) Subcellular Localization and Signaling Properties of Dishevelled in Developing Vertebrate Embryos. Curr. Biol. 15, 1039–1044.

    Article  PubMed  CAS  Google Scholar 

  16. Bement, W. M., Sokac, A. M., and Mandato, C. A. (2003) Four-Dimensional Imaging of Cytoskeletal Dynamics in Xenopus Oocytes and Eggs. Differentiation 71, 518–527.

    Article  PubMed  Google Scholar 

  17. Houliston, E. and Elinson, R. P. (1991) Patterns of Microtubule Polymerization Relating to Cortical Rotation in Xenopus laevis Eggs. Development 112, 107–117.

    PubMed  CAS  Google Scholar 

  18. Burkel, B. M., Dassow, G. V., and Bement, W. M. (2007) Versatile Fluorescent Probes for Actin Filaments Based on the Actin-Binding Domain of Utrophin. Cell Motil. Cytoskeleton 64, 822–832.

    Article  PubMed  CAS  Google Scholar 

  19. Noguchi, T. and Mabuchi, I. (2001) Reorganization of Actin Cytoskeleton at the Growing End of the Cleavage Furrow of Xenopus Egg During Cytokinesis. J. Cell. Sci. 114, 401–412.

    PubMed  CAS  Google Scholar 

  20. Danilchik, M. V., Funk, W. C., Brown, E. E., and Larkin, K. (1998) Requirement for Microtubules in New Membrane Formation During Cytokinesis of Xenopus Embryos. Dev. Biol. 194, 47–60.

    Article  PubMed  CAS  Google Scholar 

  21. Savage, R. M. and Danilchik, M. V. (1993) Dynamics of Germ Plasm Localization and Its Inhibition by Ultraviolet Irradiation in Early Cleavage Xenopus Embryos. Dev. Biol. 157, 371–382.

    Article  PubMed  CAS  Google Scholar 

  22. Weaver, C. and Kimelman, D. (2004) Move It or Lose It: Axis Specification in Xenopus. Development 131, 3491–3499.

    Article  PubMed  CAS  Google Scholar 

  23. Ubbels, G. A., Hara, K., Koster, C. H., and Kirschner, M. W. (1983) Evidence for a Functional Role of the Cytoskeleton in Determination of the Dorsoventral Axis in Xenopus laevis Eggs. J. Embryol. Exp. Morphol. 77, 15–37.

    PubMed  CAS  Google Scholar 

  24. Keller, R. E., Danilchik, M. V., Gimlich, R., and Shih, J. (1985) The Function and Mechanism of Convergent Extension During Gastrulation of Xenopus laevis. J. Embryol. Exp. Morphol. 89, 185–209.

    PubMed  Google Scholar 

  25. Sargent, T. D., Jamrich, M., and Dawid, I. B. (1986) Cell Interactions and the Control of Gene Activity During Early Development of Xenopus laevis. Dev. Biol. 114, 238–246.

    Article  PubMed  CAS  Google Scholar 

  26. Doniach, T., Phillips, C. R., and Gerhart, J. C. (1992) Planar Induction of Anteroposterior Pattern in the Developing Central Nervous System of Xenopus laevis. Science 257, 542–545.

    Article  PubMed  CAS  Google Scholar 

  27. Becker, B. E. and Gard, D. L. (2006) Visualization of the Cytoskeleton in Xenopus Oocytes and Eggs by Confocal Immunofluorescence Microscopy. Methods Mol. Biol. 322, 69–86.

    Article  PubMed  Google Scholar 

  28. Elinson, R. P. and Rowning, B. (1988) A Transient Array of Parallel Microtubules in Frog Eggs: Potential Tracks for a Cytoplasmic Rotation That Specifies the Dorso-Ventral Axis. Dev. Biol. 128, 185–197.

    Article  PubMed  CAS  Google Scholar 

  29. Gerhart, J. C., Vincent, J. P., Scharf, S. R., Black, S. D., Gimlich, R. L., and Danilchik, M. V. (1984) Localization and Induction in Early Development of Xenopus. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 307, 319–330.

    Article  PubMed  CAS  Google Scholar 

  30. Miller, J. R., Rowning, B. A., Larabell, C. A., Yang-Snyder, J. A., Bates, R. L., and Moon, R. T. (1999) Establishment of the Dorsal-Ventral Axis in Xenopus Embryos Coincides with the Dorsal Enrichment of Dishevelled That Is Dependent on Cortical Rotation. J. Cell Biol. 146, 427–437.

    Article  PubMed  CAS  Google Scholar 

  31. Rowning, B. A., Wells, J., Wu, M., Gerhart, J. C., Moon, R. T., and Larabell, C. A. (1997) Microtubule-Mediated Transport of Organelles and Localization of β-Catenin to the Future Dorsal Side of Xenopus Eggs. Proc. Natl. Acad. Sci. USA 94, 1224–1229.

    Article  PubMed  CAS  Google Scholar 

  32. Scharf, S. R. and Gerhart, J. C. (1983) Axis Determination in Eggs of Xenopus laevis: A Critical Period Before First Cleavage, Identified by the Common Effects of Cold, Pressure and Ultraviolet Irradiation. Dev. Biol. 99, 75–87.

    Article  PubMed  CAS  Google Scholar 

  33. Black, S. D. and Gerhart, J. C. (1986) High-Frequency Twinning of Xenopus laevis Embryos From Eggs Centrifuged Before First Cleavage. Dev. Biol. 116, 228–240.

    Article  PubMed  CAS  Google Scholar 

  34. Kao, K. R., Masui, Y., and Elinson, R. P. (1986) Lithium-Induced Respecification of Pattern in Xenopus laevis Embryos. Nature 322, 371–373.

    Article  PubMed  CAS  Google Scholar 

  35. Sokol, S., Christian, J. L., Moon, R. T., and Melton, D. A. (1991) Injected Wnt RNA Induces a Complete Body Axis in Xenopus Embryos. Cell 67, 741–752.

    Article  PubMed  CAS  Google Scholar 

  36. Smith, W. C. and Harland, R. M. (1992) Expression Cloning of Noggin, a New Dorsalizing Factor Localized to the Spemann Organizer in Xenopus Embryos. Cell 70, 829–840.

    Article  PubMed  CAS  Google Scholar 

  37. Drysdale, T. A. and Elinson, R. P. (1991) Development of the Xenopus laevis Hatching Gland and Its Relationship to Surface Ectoderm Patterning. Development 111, 469–478.

    PubMed  CAS  Google Scholar 

  38. Busa, W. B. and Gimlich, R. L. (1989) Lithium-Induced Teratogenesis in Frog Embryos Prevented by a Polyphosphoinositide Cycle Intermediate or a Diacylglycerol Analog. Dev. Biol. 132, 315–324.

    Article  PubMed  CAS  Google Scholar 

  39. Keller, R. and Danilchik, M. V. (1988) Regional Expression, Pattern and Timing of Convergence and Extension During Gastrulation of Xenopus laevis. Development 103, 193–209.

    PubMed  CAS  Google Scholar 

  40. Keller, R. and Shook, D. (2008) Dynamic Determinations: Patterning the Cell Behaviours That Close the Amphibian Blastopore. Philos. Trans. R. Soc., B, Biol. Sci. 363, 1317–1332.

    Article  Google Scholar 

  41. Rolo, A., Skoglund, P., and Keller, R. (2009) Morphogenetic Movements Driving Neural Tube Closure in Xenopus Require Myosin IIB. Dev. Biol. 327, 327–338.

    Article  PubMed  CAS  Google Scholar 

  42. Davidson, L. A., Hoffstrom, B. G., Keller, R., and Desimone, D. W. (2002) Mesendoderm Extension and Mantle Closure in Xenopus laevis Gastrulation: Combined Roles for Integrin, Fibronectin, and Tissue Geometry. Dev. Biol. 242, 109–129.

    Article  PubMed  CAS  Google Scholar 

  43. Lee, C., Scherr, H. M., and Wallingford, J. B. (2007) Shroom Family Proteins Regulate Gamma-Tubulin Distribution and Microtubule Architecture During Epithelial Cell Shape Change. Development 134, 1431–1441.

    Article  PubMed  CAS  Google Scholar 

  44. Mandato, C. A. and Bement, W. M. (2001) Contraction and Polymerization Cooperate to Assemble and Close Actomyosin Rings Around Xenopus Oocyte Wounds. J. Cell Biol. 154, 785–797.

    Article  PubMed  CAS  Google Scholar 

  45. Nandadasa, S., Tao, Q., Menon, N. R., Heasman, J., and Wylie, C. C. (2009) N- and E-Cadherins in Xenopus Are Specifically Required in the Neural and Non-Neural Ectoderm, Respectively, for F-Actin Assembly and Morphogenetic Movements. Development 136, 1327–1338.

    Article  PubMed  CAS  Google Scholar 

  46. Wylie, C. C., Heasman, J., Parke, J. M., Anderton, B., and Tang, P. (1986) Cytoskeletal Changes During Oogenesis and Early Development of Xenopus laevis. J. Cell Sci. Suppl. 5, 329–341.

    PubMed  CAS  Google Scholar 

  47. Houston, D. W. and King, M. L. (2000) A Critical Role for Xdazl, a Germ Plasm-Localized RNA, in the Differentiation of Primordial Germ Cells in Xenopus. Development 127, 447–456.

    PubMed  CAS  Google Scholar 

  48. Kloc, M., Wilk, K., Vargas, D., Shirato, Y., Bilinski, S., and Etkin, L. D. (2005) Potential Structural Role of Non-Coding and Coding RNAs in the Organization of the Cytoskeleton at the Vegetal Cortex of Xenopus Oocytes. Development 132, 3445–3457.

    Article  PubMed  CAS  Google Scholar 

  49. Quaas, J. and Wylie, C. (2002) Surface Contraction Waves (Scws) in the Xenopus Egg Are Required for the Localization of the Germ Plasm and Are Dependent Upon Maternal Stores of the Kinesin-Like Protein xklp1. Dev. Biol. 243, 272–280.

    Article  PubMed  CAS  Google Scholar 

  50. Robb, D. L., Heasman, J., Raats, J., and Wylie, C. (1996) A Kinesin-Like Protein Is Required for Germ Plasm Aggregation in Xenopus. Cell 87, 823–831.

    Article  PubMed  CAS  Google Scholar 

  51. Wallingford, J. B., Ewald, A. J., Harland, R. M., and Fraser, S. E. (2001) Calcium Signaling During Convergent Extension in Xenopus. Curr. Biol. 11, 652–661.

    Article  PubMed  CAS  Google Scholar 

  52. Weaver, C., Farr, G. H., Pan, W., Rowning, B. A., Wang, J., Mao, J., Wu, D., Li, L., Larabell, C. A., and Kimelman, D. (2003) GBP Binds Kinesin Light Chain and Translocates During Cortical Rotation in Xenopus Eggs. Development 130, 5425–5436.

    Article  PubMed  CAS  Google Scholar 

  53. Larabell, C. A. and Chandler, D. E. (1990) Stepwise Transformation of the Vitelline Envelope of Xenopus Eggs at Activation: a Quick-Freeze, Deep-Etch Analysis. Dev. Biol. 139, 263–268.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Danilchik’s research is supported by the National Science Foundation (IOS-0921415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael V. Danilchik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Danilchik, M.V. (2011). Manipulating and Imaging the Early Xenopus laevis Embryo. In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 770. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-210-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-210-6_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-209-0

  • Online ISBN: 978-1-61779-210-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics