Skip to main content

Live Cell Imaging of Neuronal Growth Cone Motility and Guidance In Vitro

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 769))

Abstract

The neuronal growth cone, a highly motile structure at the tip of neuronal processes, is an excellent model system for studying directional cell movements. While biochemical and genetic approaches unveiled molecular interactions between ligand, receptor, signaling, and cytoskeleton-associated proteins controlling axonal growth and guidance, in vitro live cell imaging has emerged as a crucial approach for dissecting cellular mechanisms of growth cone motility and guidance. Important insights into these mechanisms have been gained from studies using the large growth cones elaborated by Aplysia californica neurons, an outstanding model system for live cell imaging for a number of reasons. Identified neurons can be isolated and imaged at room temperature. Aplysia growth cones are five to ten times larger than growth cones from other species, making them suitable for quantitative high-resolution imaging of cytoskeletal protein dynamics and biophysical approaches. Lastly, protein, RNA, fluorescent probes, and small molecules can be microinjected into the neuronal cell body for localization and functional studies. This chapter describes culturing of Aplysia bag cell neurons, live cell imaging of neuronal growth cones using differential interference contrast and fluorescent speckle microscopy as well as the restrained bead interaction assay to induce adhesion-mediated growth cone guidance in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bashaw, G. J., and Klein, R. (2010) Signaling from axon guidance receptors, Cold Spring Harb Perspect Biol 2, a001941.

    Article  PubMed  Google Scholar 

  2. Huber, A. B., Kolodkin, A. L., Ginty, D. D., and Cloutier, J. F. (2003) Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance, Annu Rev Neurosci 26, 509–563.

    Article  PubMed  CAS  Google Scholar 

  3. Lowery, L. A., and Van Vactor, D. (2009) The trip of the tip: understanding the growth cone machinery, Nat Rev Mol Cell Biol 10, 332–343.

    Article  PubMed  CAS  Google Scholar 

  4. Gomez, T. M., Harrigan, D., Henley, J., and Robles, E. (2003) Working with Xenopus spinal neurons in live cell culture, Methods Cell Biol 71, 129–156.

    Article  PubMed  Google Scholar 

  5. Leung, K. M., and Holt, C. E. (2008) Live visualization of protein synthesis in axonal growth cones by microinjection of photoconvertible Kaede into Xenopus embryos, Nat Protoc 3, 1318–1327.

    Article  PubMed  CAS  Google Scholar 

  6. Gallo, G., Lefcort, F. B., and Letourneau, P. C. (1997) The trkA receptor mediates growth cone turning toward a localized source of nerve growth factor, J Neurosci 17, 5445–5454.

    PubMed  CAS  Google Scholar 

  7. Lewis, A. K., and Bridgman, P. C. (1992) Nerve growth cone lamellipodia contain two populations of actin filaments that differ in organization and polarity, J. Cell Biol. 119, 1219–1243.

    Article  PubMed  CAS  Google Scholar 

  8. Goslin, K., and Banker, G. (1989) Experimental observations on the development of polarity by hippocampal neurons in culture, J Cell Biol 108, 1507–1516.

    Article  PubMed  CAS  Google Scholar 

  9. Forscher, P., Kaczmarek, L. K., Buchanan, J. A., and Smith, S. J. (1987) Cyclic AMP induces changes in distribution and transport of organelles within growth cones of Aplysia bag cell neurons, J Neurosci 7, 3600–3611.

    PubMed  CAS  Google Scholar 

  10. Lee, A. C., Decourt, B., and Suter, D. (2008) Neuronal cell cultures from aplysia for high-resolution imaging of growth cones, J Vis Exp.

    Google Scholar 

  11. Waterman-Storer, C. M., Desai, A., Bulinski, J. C., and Salmon, E. D. (1998) Fluorescent speckle microscopy, a method to visualize the dynamics of protein assemblies in living cells, Curr Biol 8, 1227–1230.

    Article  PubMed  CAS  Google Scholar 

  12. Lee, A. C., and Suter, D. M. (2008) Quantitative analysis of microtubule dynamics during adhesion-mediated growth cone guidance, Dev Neurobiol 68, 1363–1377.

    Article  PubMed  Google Scholar 

  13. Schaefer, A. W., Kabir, N., and Forscher, P. (2002) Filopodia and actin arcs guide the assembly and transport of two populations of microtubules with unique dynamic parameters in neuronal growth cones, J Cell Biol 158, 139–152.

    Article  PubMed  CAS  Google Scholar 

  14. Suter, D. M., Errante, L. D., Belotserkovsky, V., and Forscher, P. (1998) The Ig superfamily cell adhesion molecule, apCAM, mediates growth cone steering by substrate-cytoskeletal coupling, J Cell Biol 141, 227–240.

    Article  PubMed  CAS  Google Scholar 

  15. Xiong, Y., Lee, A. C., Suter, D. M., and Lee, G. U. (2009) Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy, Biophys J 96, 5060–5072.

    Article  PubMed  CAS  Google Scholar 

  16. Lohof, A. M., Quillan, M., Dan, Y., and Poo, M. M. (1992) Asymmetric modulation of cytosolic cAMP activity induces growth cone turning, J Neurosci 12, 1253–1261.

    PubMed  CAS  Google Scholar 

  17. Zheng, J. Q., Felder, M., Connor, J. A., and Poo, M. M. (1994) Turning of nerve growth cones induced by neurotransmitters, Nature 368, 140–144.

    Article  PubMed  CAS  Google Scholar 

  18. Halfter, W. (1996) The behavior of optic axons on substrate gradients of retinal basal lamina proteins and merosin, J Neurosci 16, 4389–4401.

    PubMed  CAS  Google Scholar 

  19. Mai, J., Fok, L., Gao, H., Zhang, X., and Poo, M. M. (2009) Axon initiation and growth cone turning on bound protein gradients, J Neurosci 29, 7450–7458.

    Article  PubMed  CAS  Google Scholar 

  20. von Philipsborn, A. C., Lang, S., Loeschinger, J., Bernard, A., David, C., Lehnert, D., Bonhoeffer, F., and Bastmeyer, M. (2006) Growth cone navigation in substrate-bound ephrin gradients, Development 133, 2487–2495.

    Article  Google Scholar 

  21. Dertinger, S. K., Jiang, X., Li, Z., Murthy, V. N., and Whitesides, G. M. (2002) Gradients of substrate-bound laminin orient axonal specification of neurons, Proc Natl Acad Sci USA 99, 12542–12547.

    Article  PubMed  CAS  Google Scholar 

  22. Adams, D. N., Kao, E. Y., Hypolite, C. L., Distefano, M. D., Hu, W. S., and Letourneau, P. C. (2005) Growth cones turn and migrate up an immobilized gradient of the laminin IKVAV peptide, J Neurobiol 62, 134–147.

    Article  PubMed  CAS  Google Scholar 

  23. von Philipsborn, A. C., Lang, S., Bernard, A., Loeschinger, J., David, C., Lehnert, D., Bastmeyer, M., and Bonhoeffer, F. (2006) Microcontact printing of axon guidance molecules for generation of graded patterns, Nat Protoc 1, 1322–1328.

    Article  Google Scholar 

  24. Romanova, E. V., Fosser, K. A., Rubakhin, S. S., Nuzzo, R. G., and Sweedler, J. V. (2004) Engineering the morphology and electrophysiological parameters of cultured neurons by microfluidic surface patterning, FASEB J 18, 1267–1269.

    PubMed  CAS  Google Scholar 

  25. Turney, S. G., and Bridgman, P. C. (2005) Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity, Nat Neurosci 8, 717–719.

    Article  PubMed  CAS  Google Scholar 

  26. Walter, J., Kern-Veits, B., Huf, J., Stolze, B., and Bonhoeffer, F. (1987) Recognition of position-specific properties of tectal cell membranes by retinal axons in vitro, Development 101, 685–696.

    PubMed  CAS  Google Scholar 

  27. Martin, K. C., Casadio, A., Zhu, H., Yaping, E., Rose, J. C., Chen, M., Bailey, C. H., and Kandel, E. R. (1997) Synapse-specific, long-term facilitation of aplysia sensory to motor synapses: a function for local protein synthesis in memory storage, Cell 91, 927–938.

    Article  PubMed  CAS  Google Scholar 

  28. Zhao, Y., Wang, D. O., and Martin, K. C. (2009) Preparation of Aplysia sensory-motor neuronal cell cultures, J Vis Exp.

    Google Scholar 

  29. Kandel, E. R. (1976) Cellular basis of behavior, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  30. Waterman-Storer, C. (2002) Fluorescent speckle microscopy (FSM) of microtubules and actin in living cells, Curr Protoc Cell Biol Chapter 4, Unit 4 10.

    Google Scholar 

Download references

Acknowledgments

I would like to thank Aih Cheun Lee for contributing the images for Figs. 3 and 4. I am also grateful to Aih Cheun Lee and Yingpei He for excellent suggestions on this chapter. Work in the Suter lab is supported by grants from the NIH (R01 NS049233) and the Bindley Bioscience Center at Purdue University to D.M.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel M. Suter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Suter, D.M. (2011). Live Cell Imaging of Neuronal Growth Cone Motility and Guidance In Vitro. In: Wells, C., Parsons, M. (eds) Cell Migration. Methods in Molecular Biology, vol 769. Humana Press. https://doi.org/10.1007/978-1-61779-207-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-207-6_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-206-9

  • Online ISBN: 978-1-61779-207-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics