Skip to main content

Episomal Transgene Expression in Pluripotent Stem Cells

  • Protocol
  • First Online:
Human Pluripotent Stem Cells

Abstract

Herpes simplex type 1 (HSV-1) amplicon vectors possess a number of features that make them excellent vectors for the delivery of transgenes into stem cells. HSV-1 amplicon vectors are capable of efficiently transducing both dividing and nondividing cells and since the virus is quite large, 152 kb, it is of sufficient size to allow for incorporation of entire genomic DNA loci with native promoters. HSV-1 amplicon vectors can also be used to incorporate and deliver to cells a variety of sequences that allow extrachromosomal retention. These elements offer advantages over integrating vectors as they avoid transgene silencing and insertional mutagenesis. The construction of amplicon vectors carrying extrachromosomal retention elements, their packaging into HSV-1 viral particles, and the use of HSV-1 amplicons for stem cell transduction will be described.

Molecular Neurodegeneration and Gene Therapy Research Group, Department of Physiology, Anatomy and Genetics University of Oxford, UK

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spaete, R. R., and Frenkel, N. (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector Cell 30, 295–304.

    Article  PubMed  CAS  Google Scholar 

  2. Fraefel, C., Song, S., Lim, F., Lang, P., Yu, L., Wang, Y., Wild, P., and Geller, A. I. (1996) Helper virus-free transfer of herpes simplex virus type 1 plasmid vectors into neural cells J Virol 70, 7190–7.

    PubMed  CAS  Google Scholar 

  3. Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, X. O., and Chiocca, E. A. (2001) Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome Mol Ther 3, 591–601.

    Article  PubMed  CAS  Google Scholar 

  4. Wade-Martins, R., Smith, E. R., Tyminski, E., Chiocca, E. A., and Saeki, Y. (2001) An infectious transfer and expression system for genomic DNA loci in human and mouse cells Nat Biotechnol 19, 1067–70.

    Article  PubMed  CAS  Google Scholar 

  5. Wang, S., and Vos, J. M. (1996) A hybrid herpesvirus infectious vector based on Epstein-Barr virus and herpes simplex virus type 1 for gene transfer into human cells in vitro and in vivo J Virol 70, 8422–30.

    PubMed  CAS  Google Scholar 

  6. Piechaczek, C., Fetzer, C., Baiker, A., Bode, J., and Lipps, H. J. (1999) A vector based on the SV40 origin of replication and chromosomal S/MARs replicates episomally in CHO cells Nucleic Acids Res 27, 426–8.

    Article  PubMed  CAS  Google Scholar 

  7. Lufino, M. M., Manservigi, R., and Wade-Martins, R. (2007) An S/MAR-based infectious episomal genomic DNA expression vector provides long-term regulated functional complementation of LDLR deficiency Nucleic Acids Res 35, e98.

    Article  PubMed  Google Scholar 

  8. Moralli, D., Simpson, K. M., Wade-Martins, R., and Monaco, Z. L. (2006) A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors EMBO Rep 7, 911–8.

    Article  PubMed  CAS  Google Scholar 

  9. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., McIntyre, E., Radford, I., Villeval, J. L., Fraser, C. C., Cavazzana-Calvo, M., and Fischer, A. (2003) A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency N Engl J Med 348, 255–6.

    Article  PubMed  Google Scholar 

  10. Hacein-Bey-Abina, S., Von Kalle, C., Schmidt, M., McCormack, M. P., Wulffraat, N., Leboulch, P., Lim, A., Osborne, C. S., Pawliuk, R., Morillon, E., Sorensen, R., Forster, A., Fraser, P., Cohen, J. I., de Saint Basile, G., Alexander, I., Wintergerst, U., Frebourg, T., Aurias, A., Stoppa-Lyonnet, D., Romana, S., Radford-Weiss, I., Gross, F., Valensi, F., Delabesse, E., Macintyre, E., Sigaux, F., Soulier, J., Leiva, L. E., Wissler, M., Prinz, C., Rabbitts, T. H., Le Deist, F., Fischer, A., and Cavazzana-Calvo, M. (2003) LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1 Science 302, 415–9.

    Google Scholar 

  11. Hibbitt, O. C., Harbottle, R. P., Waddington, S. N., Bursill, C. A., Coutelle, C., Channon, K. M., and Wade-Martins, R. (2007) Delivery and long-term expression of a 135 kb LDLR genomic DNA locus in vivo by hydrodynamic tail vein injection J Gene Med 9, 488–97.

    Article  PubMed  CAS  Google Scholar 

  12. Wade-Martins, R., Saeki, Y., and Chiocca, E. A. (2003) Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells Mol Ther 7, 604–12.

    Article  PubMed  CAS  Google Scholar 

  13. Bowers, W. J., and Federoff, H. J. (2006) Herpes simplex virus type 1-derived amplicon vectors, Gene Transfer: Delivery and Expression of DNA and RNA, A Laboratory Manual, pg. 227–254, Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  14. Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., Takahashi, J. B., Nishikawa, S., Nishikawa, S., Muguruma, K., and Sasai, Y. (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells Nat Biotechnol 25, 681–6.

    Article  PubMed  CAS  Google Scholar 

  15. Ludwig, T. E., Bergendahl, V., Levenstein, M. E., Yu, J., Probasco, M. D., and Thomson, J. A. (2006) Feeder-independent culture of human embryonic stem cells Nat Methods 3, 637–46.

    Article  PubMed  CAS  Google Scholar 

  16. Lufino, M. M., Edser, P. A., and Wade-Martins, R. (2008) Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression Mol Ther 16, 1525–38.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Parkinson’s UK Monument Trust Discovery Award; the Friedreich’s Ataxia Research Alliance, Ataxia UK and the National Ataxia Foundation; the Medical Research Council and the Biotechnology and Biological Sciences Research Council. M.M.P.L. is an Ataxia UK Research Fellow, A.R.P. is a Medical Research Council student and S.A.C. is a Wellcome Trust Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Wade-Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lufino, M.M.P., Popplestone, A.R., Cowley, S.A., Edser, P.A.H., James, W.S., Wade-Martins, R. (2011). Episomal Transgene Expression in Pluripotent Stem Cells. In: Schwartz, P., Wesselschmidt, R. (eds) Human Pluripotent Stem Cells. Methods in Molecular Biology, vol 767. Humana Press. https://doi.org/10.1007/978-1-61779-201-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-201-4_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-200-7

  • Online ISBN: 978-1-61779-201-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics