Skip to main content

Quantitative Proteome and Phosphoproteome Analysis of Human Pluripotent Stem Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 767))

Abstract

Understanding the signaling pathways governing pluripotency and self-renewal is a prerequisite for better controlling stem cell differentiation to specific fates. Reversible protein phosphorylation is one of the most important posttranslational modifications regulating signaling pathways in biological processes. Global analysis of dynamic changes in protein phosphorylation is, therefore, key to understanding signaling at the system level. Here, we describe a generic mass spectrometry (MS)-based phosphoproteomics strategy applied to monitor phosphorylation dynamics after bone morphogenetic protein 4 (BMP4)-induced differentiation of human embryonic stem cells (hESCs). Our method combines the use of strong cation exchange (SCX) and titanium dioxide (TiO2) for phosphopeptide enrichment, high-resolution MS for peptide and protein identification, and stable isotope labeling by amino acids in cell culture (SILAC) for quantification. This approach allows us to identify thousands of phosphorylation sites and profile their relative abundance during differentiation. This systems-biology-based approach provides new insights into how human pluripotent stem cells exit the pluripotent state.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Niwa H., Miyazaki J., Smith A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 24, 372–6.

    Article  PubMed  CAS  Google Scholar 

  2. Avilion A. A., Nicolis S. K., Pevny L. H., Perez L., Vivian N., Lovell-Badge R. (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17, 126–40.

    Article  PubMed  CAS  Google Scholar 

  3. Yuan H., Corbi N., Basilico C., Dailey L. (1995) Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 9, 2635–45.

    Article  PubMed  CAS  Google Scholar 

  4. Mitsui K., Tokuzawa Y., Itoh H., Segawa K., Murakami M., Takahashi K., et al. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–42.

    Article  PubMed  CAS  Google Scholar 

  5. Ying Q. L., Nichols J., Chambers I., Smith A. (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115, 281–92.

    Article  PubMed  CAS  Google Scholar 

  6. Vallier L., Alexander M., Pedersen R. A. (2005) Activin/Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118, 4495–509.

    Article  PubMed  CAS  Google Scholar 

  7. Xu R. H., Peck R. M., Li D. S., Feng X., Ludwig T., Thomson J. A. (2005) Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods 2, 185–90.

    Article  PubMed  CAS  Google Scholar 

  8. Xu R. H., Sampsell-Barron T. L., Gu F., Root S., Peck R. M., Pan G., et al. (2008) NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell 3, 196–206.

    Article  PubMed  CAS  Google Scholar 

  9. Hirst M., Delaney A., Rogers S. A., Schnerch A., Persaud D. R., O’Connor M. D., et al. (2007) LongSAGE profiling of nine human embryonic stem cell lines. Genome Biol 8, R113.

    Article  PubMed  Google Scholar 

  10. Skottman H., Mikkola M., Lundin K., Olsson C., Stromberg A. M., Tuuri T., et al. (2005) Gene expression signatures of seven individual human embryonic stem cell lines. Stem Cells 23, 1343–56.

    Article  PubMed  CAS  Google Scholar 

  11. Pan G., Tian S., Nie J., Yang C., Ruotti V., Wei H., et al. (2007) Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 1, 299–312.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao X. D., Han X., Chew J. L., Liu J., Chiu K. P., Choo A., et al. (2007) Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 1, 286–98.

    Article  PubMed  CAS  Google Scholar 

  13. Cox J., Mann M. (2007) Is proteomics the new genomics? Cell 130, 395–8.

    Article  PubMed  CAS  Google Scholar 

  14. Gruhler A., Olsen J. V., Mohammed S., Mortensen P., Faergeman N. J., Mann M., et al. (2005) Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4, 310–27.

    Article  PubMed  CAS  Google Scholar 

  15. Kratchmarova I., Blagoev B., Haack-Sorensen M., Kassem M., Mann M. (2005) Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–7.

    Article  PubMed  CAS  Google Scholar 

  16. Macek B., Mann M., Olsen J. V. (2009) Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol 49, 199–221.

    Article  PubMed  CAS  Google Scholar 

  17. Beausoleil S. A., Jedrychowski M., Schwartz D., Elias J. E., Villen J., Li J., et al. (2004) Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101, 12130–5.

    Article  PubMed  CAS  Google Scholar 

  18. Pinkse M. W., Mohammed S., Gouw J. W., van Breukelen B., Vos H. R., Heck A. J. (2008) Highly robust, automated, and sensitive online TiO2-based phosphoproteomics applied to study endogenous phosphorylation in Drosophila melanogaster. J Proteome Res 7, 687–97.

    Article  PubMed  CAS  Google Scholar 

  19. Ong S. E., Blagoev B., Kratchmarova I., Kristensen D. B., Steen H., Pandey A., et al. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–86.

    Article  PubMed  CAS  Google Scholar 

  20. Van Hoof D., Pinkse M. W., Oostwaard D. W., Mummery C. L., Heck A. J., Krijgsveld J. (2007) An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat Methods 4, 677–8.

    Article  PubMed  Google Scholar 

  21. Van Hoof D., Munoz J., Braam S. R., Pinkse M. W., Linding R., Heck A. J., et al. (2009) Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5, 214–26.

    Article  PubMed  Google Scholar 

  22. Takahashi K., Tanabe K., Ohnuki M., Narita M., Ichisaka T., Tomoda K., et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–72.

    Article  PubMed  CAS  Google Scholar 

  23. Cowan C. A., Klimanskaya I., McMahon J., Atienza J., Witmyer J., Zucker J. P., et al. (2004) Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 350, 1353–6.

    Article  PubMed  CAS  Google Scholar 

  24. Braam S. R., Denning C., van den Brink S., Kats P., Hochstenbach R., Passier R., et al. (2008) Improved genetic manipulation of human embryonic stem cells. Nat Methods 5, 389–92.

    Article  PubMed  CAS  Google Scholar 

  25. Zhang G., Fenyo D., Neubert T. A. (2009) Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture. J Proteome Res 8, 1285–92.

    Article  PubMed  CAS  Google Scholar 

  26. Braam S. R., Denning C., Matsa E., Young L. E., Passier R., Mummery C. L. (2008) Feeder-free culture of human embryonic stem cells in conditioned medium for efficient genetic modification. Nat Protoc 3, 1435–43.

    Article  PubMed  CAS  Google Scholar 

  27. Pera M. F., Andrade J., Houssami S., Reubinoff B., Trounson A., Stanley E. G., et al. (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117, 1269–80.

    Article  PubMed  CAS  Google Scholar 

  28. Righetti P. G. (2006) Real and imaginary artefacts in proteome analysis via two-dimensional maps. J Chromatogr B Analyt Technol Biomed Life Sci 841, 14–22.

    Article  PubMed  CAS  Google Scholar 

  29. Elias J. E., Gygi S. P. (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4, 207–14.

    Article  PubMed  CAS  Google Scholar 

  30. Beausoleil S. A., Villen J., Gerber S. A., Rush J., Gygi S. P. (2006) A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat Biotechnol 24, 1285–92.

    Article  PubMed  CAS  Google Scholar 

  31. Olsen J. V., Blagoev B., Gnad F., Macek B., Kumar C., Mortensen P., et al. (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 127, 635–48.

    Article  PubMed  CAS  Google Scholar 

  32. Maitra A., Arking D. E., Shivapurkar N., Ikeda M., Stastny V., Kassauei K., et al. (2005) Genomic alterations in cultured human embryonic stem cells. Nat Genet 37, 1099–103.

    Article  PubMed  CAS  Google Scholar 

  33. Lemeer S., Heck A. J. (2009) The phosphoproteomics data explosion. Curr Opin Chem Biol 13, 414–20.

    Article  PubMed  CAS  Google Scholar 

  34. Villen J., Beausoleil S. A., Gerber S. A., Gygi S. P. (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA 104, 1488–93.

    Article  PubMed  CAS  Google Scholar 

  35. Rikova K., Guo A., Zeng Q., Possemato A., Yu J., Haack H., et al. (2007) Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–203.

    Article  PubMed  CAS  Google Scholar 

  36. Boersema P. J., Foong L. Y., Ding V. M., Lemeer S., van Breukelen B., Philp R., et al. (2009) In depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immuno-affinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics.

    Google Scholar 

  37. Ong S. E., Kratchmarova I., Mann M. (2003) Properties of 13 C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2, 173–81.

    Article  PubMed  CAS  Google Scholar 

  38. Petyuk V. A., Jaitly N., Moore R. J., Ding J., Metz T. O., Tang K., et al. (2008) Elimination of systematic mass measurement errors in liquid chromatography-mass spectrometry based proteomics using regression models and a priori partial knowledge of the sample content. Anal Chem 80, 693–706.

    Article  PubMed  CAS  Google Scholar 

  39. Zubarev R., Mann M. (2007) On the proper use of mass accuracy in proteomics. Mol Cell Proteomics 6, 377–81.

    PubMed  CAS  Google Scholar 

  40. Bendall S. C., Hughes C., Stewart M. H., Doble B., Bhatia M., Lajoie G. A. (2008) Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7, 1587–97.

    Article  PubMed  CAS  Google Scholar 

  41. Boersema P. J., Aye T. T., van Veen T. A., Heck A. J., Mohammed S. (2008) Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 8, 4624–32.

    Article  PubMed  CAS  Google Scholar 

  42. Hsu J. L., Huang S. Y., Chow N. H., Chen S. H. (2003) Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75, 6843–52.

    Article  PubMed  CAS  Google Scholar 

  43. Lau K. W., Jones A. R., Swainston N., Siepen J. A., Hubbard S. J. (2007) Capture and analysis of quantitative proteomic data. Proteomics 7, 2787–99.

    Article  PubMed  CAS  Google Scholar 

  44. Cox J., Mann M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367–72.

    Article  PubMed  CAS  Google Scholar 

  45. Köcher T., Swart R., Mechtler K. (2011) Anal Chem. 83(7), 2699–704. Epub 2011 Mar 9. PMID: 21388192 [PubMed – in process]

    Google Scholar 

Download references

Acknowledgments

Parts of the work described here were supported by the Bsik programs “Dutch Platform for Tissue Engineering,” “Stem Cells in Development and Disease,” the Netherlands Proteomic Center, and the FP6 EU Program Heart Development and Heart Repair. We also acknowledge the contributions from the Mummery and Heck groups, especially Dennis van Hoof, Stefan Braam, Martijn Pinkse, Shabaz Mohammed, and Jeroen Krijgsveld.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert J. R. Heck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Muñoz, J., Heck, A.J.R. (2011). Quantitative Proteome and Phosphoproteome Analysis of Human Pluripotent Stem Cells. In: Schwartz, P., Wesselschmidt, R. (eds) Human Pluripotent Stem Cells. Methods in Molecular Biology, vol 767. Humana Press. https://doi.org/10.1007/978-1-61779-201-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-201-4_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-200-7

  • Online ISBN: 978-1-61779-201-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics