Skip to main content

Stem Cell Banks: Preserving Cell Lines, Maintaining Genetic Integrity, and Advancing Research

  • Protocol
  • First Online:
Human Pluripotent Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 767))

Abstract

The ability to cryopreserve and successfully recover cell lines has been critical to the conservation of all cell lines, especially the preservation of pristine early-stage cultures and the preparation of well-characterized cell banks. Indeed, the systematic storage and establishment of cryopreserved banks of cells for the stem cell research community is fundamental to the promotion of standardisation in stem cell research and their use in clinical applications. In spite of the significant potential for the use of stem cells in research and therapy, they are challenging to maintain and have been shown to be unstable after prolonged culture that often results in permanent alterations in their genetic make-up, which ultimately alters the phenotype of the culture. This chapter will review the principles of cell bank production, techniques for the scale-up of human pluripotent stem cells, quality control, and characterisation methods for banked cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. EU Commission of the European Communities (1998) The Rules Governing Medical Products in the European Community, Good Manufacturing Practice for Medicinal Products, Volume IV, April 1998, ISBN 9289–20297, with additional Annexes and update of legal references, July 2004.

    Google Scholar 

  2. European Union (2004) Directive 2004/23/EC of the European Parliament and the Council of 31 March 2004 on setting standards of quality and safety for the donation, processing, preservation, storage and distribution of human tissues and cells. Official Journal of the European Union, L102:48–58.

    Google Scholar 

  3. US Food and Drugs Administration (2004a) 21 CFR Parts 16, 1270 and 1271. Current Good Tissue Practice for Human Cell, Tissue, and Cellular and Tissue-Based Products Establishments; Inspection and Enforcement; Final Rule. Department of Health and Human Services, November 24.

    Google Scholar 

  4. US Food and Drug Administration (2004b) Title 21, Code of Federal Regulations, Part 210, Current Good Manufacturing Practice in Manufacturing, Processing, Packing, or Holding of Drugs; General, US FDA.

    Google Scholar 

  5. US Food and Drug Administration (2004c) Title 21, Code of Federal Regulations, Part 211, Current Good Manufacturing Practice for Finished Pharmaceuticals, US FDA. US.

    Google Scholar 

  6. Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S, Blum B, Brooking J, Chen KG, Choo AB, Churchill GA, Corbel M, Damjanov I, Draper JS, Dvorak P, Emanuelsson K, Fleck RA, Ford A, Gertow K, Gertsenstein M, Gokhale PJ, Hamilton RS, Hampl A, Healy LE, Hovatta O, Hyllner J, Imreh MP, Itskovitz-Eldor J, Jackson J, Johnson JL, Jones M, Kee K, King BL, Knowles BB, Lako M, Lebrin F, Mallon BS, Manning D, Mayshar Y, McKay RD, Michalska AE, Mikkola M, Mileikovsky M, Minger SL, Moore HD, Mummery CL, Nagy A, Nakatsuji N, O’Brien CM, Oh SK, Olsson C, Otonkoski T, Park KY, Passier R, Patel H, Patel M, Pedersen R, Pera MF, Piekarczyk MS, Pera RA, Reubinoff BE, Robins AJ, Rossant J, Rugg-Gunn P, Schulz TC, Semb H, Sherrer ES, Siemen H, Stacey GN, Stojkovic M, Suemori H, Szatkiewicz J, Turetsky T, Tuuri T, van den Brink S, Vintersten K, Vuoristo S, Ward D, Weaver TA, Young LA, Zhang W (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol. 25:803–16.

    Article  PubMed  CAS  Google Scholar 

  7. International Stem Cell Banking Initiative. International Stem Cell banking Initiative (2009) Consensus guidance for banking and supply of human embryonic stem cell lines for research purposes. Stem Cell Rev. 5:301–14.

    Article  Google Scholar 

  8. Prowse AB, McQuade LR, Bryant KJ, Van Dyk DD, Tuch BE, Gray PP (2005) A proteome analysis of conditioned media from human neonatal fibroblasts used in the maintenance of human embryonic stem cells. Proteomics. 5:978–89.

    Article  PubMed  CAS  Google Scholar 

  9. Baharvand H, Hajheidari M, Ashtiani SK, Salekdeh GH (2006) Proteomic signature of human embryonic stem cells. Proteomics. 6:3544–9.

    Article  PubMed  Google Scholar 

  10. Wagg SK, Lee LE (2005) A proteomics approach to identifying fish cell lines. Proteomics. 5:4236–44.

    Article  PubMed  CAS  Google Scholar 

  11. Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, Hay R, Merten O.-W, Price A, Shechtman L, Stacey G, Strokes W (2005) Guidance on Good Cell Culture Practice: a report of the second ECVAM task force on good cell culture practice. ATLA, 33:261–287.

    PubMed  CAS  Google Scholar 

  12. Knezevic I, Stacey G, Petricciani J, Sheets R, WHO Study Group on Cell Substrates (2010)Evaluation of cell substrates for the production of biologicals: Revision of WHO recommendations. Report of the WHO Study Group on Cell Substrates for the Production of Biologicals, 22–23 April 2009, Bethesda, USA. Biologicals. 38(1):162–9.

    Google Scholar 

  13. Day DG, Stacey GN (2007) Cryopreser­vation and freezedrying methods. Humana Press, Totowa, USA.

    Article  PubMed  Google Scholar 

  14. Hunt CJ (2011) Cryopreservation of human stem cells for clinical application: a review. Transfus Med Hemother. 38(2):107–23.

    Google Scholar 

  15. Ellerström C, Strehl R, Noaksson K, Hyllner J, Semb H (2007) Facilitated expansion of human embryonic stem cells by single-cell enzymatic dissociation. Stem Cells. 25:1690–6.

    Article  PubMed  Google Scholar 

  16. Bajpai R, Lesperance J, Kim M, Terskikh AV (2008) Efficient propagation of single cells Accutase-dissociated human embryonic stem cells. Mol Reprod Dev. 75:818–27.

    Article  PubMed  CAS  Google Scholar 

  17. Thomson A, Wojtacha D, Hewitt Z, Priddle H, Sottile V, Di Domenico A, Fletcher J, Waterfall M, Corrales NL, Ansell R, McWhir J (2008) Human embryonic stem cells passaged using enzymatic methods retain a normal karyotype and express CD30. Cloning Stem Cells. 10:89–106.

    Google Scholar 

  18. Ellerström C, Hyllner J, Strehl R (2010) Single cell enzymatic dissociation of human embryonic stem cells: a straightforward, robust, and standardized culture method. Methods Mol Biol. 584:121–34.

    Article  PubMed  Google Scholar 

  19. Imreh MP, Gertow K, Cedervall J, Unger C, Holmberg K, Szöke K, Csöregh L, Fried G, Dilber S, Blennow E, Ahrlund-Richter L (2006) In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells. J Cell Biochem. 99:508–16.

    Article  PubMed  CAS  Google Scholar 

  20. Baker DE, Harrison NJ, Maltby E, Smith K, Moore HD, Shaw PJ, Heath PR, Holden H, Andrews PW (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 25:207–15.

    Article  PubMed  CAS  Google Scholar 

  21. Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C, Leone PE, Menendez P (2008) Human ESCs predisposition to karyotypic instability: Is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer. 3;7:76.

    Google Scholar 

  22. Lefort N, Perrier AL, Laâbi Y, Varela C, Peschanski M (2009) Human embryonic stem cells and genomic instability. Regen Med. 4:899–909.

    Article  PubMed  Google Scholar 

  23. Närvä E, Autio R, Rahkonen N, Kong L, Harrison N, Kitsberg D, Borghese L, Itskovitz-Eldor J, Rasool O, Dvorak P, Hovatta O, Otonkoski T, Tuuri T, Cui W, Brüstle O, Baker D, Maltby E, Moore HD, Benvenisty N, Andrews PW, Yli-Harja O, Lahesmaa R (2010) High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol. 28:371–7.

    Article  PubMed  Google Scholar 

  24. Vuoristo S, Virtanen I, Takkunen M, Palgi J, Kikkawa Y, Rousselle P, Sekiguchi K, Tuuri T, Otonkoski T (2009) Laminin isoforms in human embryonic stem cells: synthesis, receptor usage and growth support. J Cell Mol Med. 13:2622–33.

    Article  PubMed  Google Scholar 

  25. Braam SR, Zeinstra L, Litjens S, Ward-van Oostwaard D, van den Brink S, van Laake L, Lebrin F, Kats P, Hochstenbach R, Passier R, Sonnenberg A, Mummery CL (2008) Recombinant vitronectin is a functionally defined substrate that supports human embryonic stem cell self-renewal via alphavbeta5 integrin. Stem Cells. 26:2257–65.

    Google Scholar 

  26. Azarin SM, Palecek SP (2010) Development of Scalable Culture Systems for Human Embryonic Stem Cells. Biochem Eng J. 2010 48:378–384.

    Article  PubMed  CAS  Google Scholar 

  27. Steiner D, Khaner H, Cohen M, Even-Ram S, Gil Y, Itsykson P, Turetsky T, Idelson M, Aizenman E, Ram R, Berman-Zaken Y, Reubinoff B (2010) Derivation, propagation and controlled differentiation of human embryonic stem cells in suspension. Nat Biotechnol. 28:361–4.

    Article  PubMed  CAS  Google Scholar 

  28. Singh H, Mok P, Balakrishnan T, Rahmat SN, Zweigerdt R (2010) Up-scaling single cell-inoculated suspension culture of human embryonic stem cells. Stem Cell Res. Mar 12. [Epub ahead of print].

    Google Scholar 

  29. Fernandes AM, Marinho PA, Sartore RC, Paulsen BS, Mariante RM, Castilho LR, Rehen SK (2009) Successful scale-up of human embryonic stem cell production in a stirred microcarrier culture system. Braz J Med Biol Res. 42:515–22.

    PubMed  CAS  Google Scholar 

  30. Krawetz R, Taiani JT, Liu S, Meng G, Li X, Kallos MS, Rancourt D (2009) Large-Scale Expansion of Pluripotent Human Embryonic Stem Cells in Stirred Suspension Bioreactors. Tissue Eng Part C Methods. 2009 Sep 8. [Epub ahead of print].

    Google Scholar 

  31. Stacey GN, Davis J (2007) Medicines from Animal Cell Cultures, Wiley & Sons, Chichester, UK.

    Book  Google Scholar 

  32. Oh SK, Choo AB (2006) Human embryonic stem cell technology: large scale cell amplification and differentiation.Cytotechnology. 50:181–90.

    Article  PubMed  CAS  Google Scholar 

  33. Martin Y, Vermette P (2005) Bioreactors for tissue mass culture: design, characterization, and recent advances. Biomaterials. 26:7481–7503.

    Article  PubMed  CAS  Google Scholar 

  34. Kodidis T, Lenz A, Buoblik J, Akhyari P, Wachsmann B, Mueller-Stahl K, Hofmann M, Haverich A (2003) Pulsatile perfusion and ­cardiomyocyte viability in a solid three-dimensional matrix. Biomaterials. 24:5009–5014.

    Article  PubMed  CAS  Google Scholar 

  35. Thomas RJ, Anderson D, Chandra A, Smith NM, Young LE, Williams D, Denning C (2009) Automated, scalable culture of human embryonic stem cells in feeder-free conditions. Biotechnol Bioeng. 102:1636–44.

    Article  PubMed  CAS  Google Scholar 

  36. Stacey GN, Auerbach JM (2007) Quality Control of Stem Cell Lines. In: Culture of Stem Cells. (Eds.: Freshney IR, Stacey GN, and Auerbach JM, John Wiley & Sons). pp. 1–22.

    Google Scholar 

  37. Gartler SM (1967) Genetic markers as tracers in cell culture. Natl Cancer Inst Monogr. 26:167–95.

    PubMed  CAS  Google Scholar 

  38. Nelson-Rees WA, Daniels DW, Flandermeyer RR (1981) Cross-contamination of cells in culture. Science. 1212:446–52.

    Article  Google Scholar 

  39. MacLeod RA, Dirks WG, Matsuo Y, Kaufmann M, Milch H, Drexler HG (1999) Widespread intraspecies cross-contamination of human tumor cell lines arising at source. Int J Cancer. 83:555–63.

    Google Scholar 

  40. Drexler HG, Dirks WG, Matsuo Y, MacLeod RA (2003) False leukemia-lymphoma cell lines: an update on over 500 cell lines. Leukemia. 17:416–26.

    Article  PubMed  CAS  Google Scholar 

  41. Melcher R, Maisch S, Koehler S, Bauer M, Steinlein C, Schmid M, Kudlich T, Schauber J Luehrs H, Menzel T, Scheppach W (2005) SKY and genetic fingerprinting reveal a cross-contamination of the putative normal colon epithelial cell line NCOL-1. Cancer Genet Cytogenet. 158:84–7.

    Google Scholar 

  42. Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A, Macleod RA, Masters JR, Nakamura Y, Reid YA, Reddel RR, Freshney RI (2010) Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer. Feb 8. [Epub ahead of print].

    Google Scholar 

  43. Christensen B, Hansen C, Debiek-Rychter M, Kieler J, Ottensen S, Schmidt J (1993) Identity of tumourigenic uroepithelial cell lines and “spontaneously” transformed sublines. Br J Can. 68:879–884.

    Article  CAS  Google Scholar 

  44. Stacey GN. Quality Control of Human Stem Cell Lines. (2007b) In: Human Embryonic Stem Cells (Human Cell Culture - Volume 6) (Eds.: Masters J, Palsson B, Thomson J), Springer (Tokyo and new York), pp. 1–22.

    Google Scholar 

  45. Masters JRW, Thompson J, Daly-Burns B, Reid YA, Dirks WG, Packer PI, Toji LH, Ohno T, Tanabe TH, Arlett CF, Kelland LR, Harrison M, Virmani A, Ward TH, Ayres KL, Debenham PG (2001) Short tandem repeat profiling ­provides international reference ­standards for human cell lines. PNAS (USA), 98:8012–8017.

    Article  CAS  Google Scholar 

  46. Parson W, Kirchebner R, Muhlmann R, Renner K, Kofler A, Schmidt S, Kofler R (2005) Cancer cell line identification by short tandem repeat profiling: power and limitations. FASEB J. 19:434–436.

    PubMed  CAS  Google Scholar 

  47. European Pharmacopoeia (2006a) European Pharmacopoeia section 2.6.1 (Sterility), 5th Edition, Maisonneuve SA, Sainte Ruffine (www.pheur.org).

  48. European Pharmacopoeia (2006b) European Pharmacopoeia section 2.6.7 (Mycoplasma), 5th Edition, Maisonneuve SA, Sainte Ruffine.

    Google Scholar 

  49. US Food and Drugs Administration (2005a) Title 21, Code of Federal Regulations, Volume 7, revised April 2005, CFR610.12 (Sterility), FDA, Department of Health and Human Services.

    Google Scholar 

  50. US Food and Drugs Administration (2005b) Title 21, Code of Federal Regulations, Volume 7, revised April 2005, CFR610.30 (Test for Mycoplasma), FDA, Department of Health and Human Services.

    Google Scholar 

  51. Stacey GN, Tyrrel DA, Doyle A (1998) Source materials. In: Safety in Cell and Tissues Culture (Eds.: Stacey GN, Hambleton PJ, Doyle A), Kluwer Academic, Dordrecht, The Netherlands, pp. 1–25.

    Google Scholar 

  52. Stacey GN (2007c) Risk assessment of cell culture procedures. In: Medicines from Animal Cell Cultures, Wiley & Sons, Chichester, UK pp. 569–599.

    Google Scholar 

  53. Pera M, Reubinoff B, Thomson JA (2000) Human embryonic stem cells. J Cell Sci. 113: 5–10.

    PubMed  CAS  Google Scholar 

  54. Andrews PW, Przyborski SA, Thomson JA (2001) Embryonal carcinoma cells as embryonic stem cells. In: Stem Cell Biology (Eds.: Marshak DR, Gardner RL, Gottlieb D), Cold Spring Harbor Monograph Series, Cold Spring Harbor, New York, pp. 231–265.

    Google Scholar 

  55. Draper JS, Pigott C, Thomson JA, Andrews PA (2002) Surface antigens of human embryonic stem cells: changes upon differentiation in culture. J Anat. 200:249–258.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Medical Research Council (MRC), the Biotechnology and Biological Sciences Research Council (BBSRC), and the International Stem Cell Forum for funding and supporting the activities of the UK Stem Cell Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glyn N. Stacey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Healy, L., Young, L., Stacey, G.N. (2011). Stem Cell Banks: Preserving Cell Lines, Maintaining Genetic Integrity, and Advancing Research. In: Schwartz, P., Wesselschmidt, R. (eds) Human Pluripotent Stem Cells. Methods in Molecular Biology, vol 767. Humana Press. https://doi.org/10.1007/978-1-61779-201-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-201-4_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-200-7

  • Online ISBN: 978-1-61779-201-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics