Skip to main content

Array-Based Synthetic Genetic Screens to Map Bacterial Pathways and Functional Networks in Escherichia coli

  • Protocol
  • First Online:
Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

Cellular processes are carried out through a series of molecular interactions. Various experimental approaches can be used to investigate these functional relationships on a large-scale. Recently, the power of investigating biological systems from the perspective of genetic (gene–gene or epistatic) interactions has been evidenced by the ability to elucidate novel functional relationships. Examples of functionally related genes include genes that buffer each other’s function or impinge on the same biological process. Genetic interactions have traditionally been investigated in bacteria by combining pairs of mutations (e.g., gene deletions) and assessing deviation of the phenotype of each double mutant from an expected neutral (or no interaction) phenotype. Fitness is a particularly convenient phenotype to measure: when the double mutant grows faster or slower than expected, the two mutated genes are said to show alleviating or aggravating interactions, respectively. The most commonly used neutral model assumes that the fitness of the double mutant is equal to the product of individual single mutant fitness. A striking genetic interaction is exemplified by the loss of two nonessential genes that buffer each other in performing an essential biological function: deleting only one of these genes produces no detectable fitness defect; however, loss of both genes simultaneously results in systems failure, leading to synthetic sickness or lethality. Systematic large-scale genetic interaction screens have been used to generate functional maps for model eukaryotic organisms, such as yeast, to describe the functional organization of gene products into pathways and protein complexes within a cell. They also reveal the modular arrangement and cross talk of pathways and complexes within broader functional neighborhoods (Dixon et al., Annu Rev Genet 43:601–625, 2009). Here, we present a high-throughput quantitative Escherichia coli Synthetic Genetic Array (eSGA) screening procedure, which we developed to systematically infer genetic interactions by scoring growth defects among large numbers of double mutants in a classic Gram-negative bacterium. The eSGA method exploits the rapid colony growth, ease of genetic manipulation, and natural efficient genetic exchange via conjugation of laboratory E. coli strains. Replica pinning is used to grow and mate arrayed sets of single gene mutant strains and to select double mutants en masse. Strain fitness, which is used as the eSGA readout, is quantified by the digital imaging of the plates and subsequent measuring and comparing single and double mutant colony sizes. While eSGA can be used to screen select mutants to probe the functions of individual genes, using eSGA more broadly to collect genetic interaction data for many combinations of genes can help reconstruct a functional interaction network to reveal novel links and components of biological pathways as well as unexpected connections between pathways. A variety of bacterial systems can be investigated, wherein the genes impinge on a essential biological process (e.g., cell wall assembly, ribosome biogenesis, chromosome replication) that are of interest from the perspective of drug development (Babu et al., Mol Biosyst 12:1439–1455, 2009). We also show how genetic interactions generated by high-throughput eSGA screens can be validated by manual small-scale genetic crosses and by genetic complementation and gene rescue experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hu P., Janga S. C., Babu M., Diaz-Mejia J. J., Butland G. (2009) Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 7, e1000096.

    Article  Google Scholar 

  2. Pereira-Leal J. B., Levy E. D., Teichmann S. A. (2006) The origins and evolution of functional modules: lessons from protein complexes. Philos Trans R Soc Lond B Biol Sci 361, 507–517.

    Article  PubMed  CAS  Google Scholar 

  3. Babu M., Musso G., Diaz-Mejia J. J., Butland G., Greenblatt J. F., Emili A. (2009) Systems-level approaches for identifying and analyzing genetic interaction networks in Escherichia coli and extensions to other prokaryotes. Mol Biosyst 12, 1439–1455.

    Article  Google Scholar 

  4. Beltrao P., Cagney G., Krogan N. J. (2010) Quantitative genetic interactions reveal biological modularity. Cell 141, 739–745.

    Article  PubMed  CAS  Google Scholar 

  5. Beyer A., Bandyopadhyay S., Ideker T. (2007) Integrating physical and genetic maps: from genomes to interaction networks. Nat Rev Genet 8, 699–710.

    Article  PubMed  CAS  Google Scholar 

  6. Motter A. E., Gulbahce N., Almaas E., Barabasi A. L. (2008) Predicting synthetic rescues in metabolic networks. Mol Syst Biol 4, 168.

    Article  PubMed  Google Scholar 

  7. Bandyopadhyay S., Kelley R., Krogan N. J., Ideker T. (2008) Functional maps of protein complexes from quantitative genetic interaction data. PLoS Comput Biol 4, e1000065.

    Article  PubMed  Google Scholar 

  8. Boone C., Bussey H., Andrews B. J. (2007) Exploring genetic interactions and networks with yeast. Nat Rev Genet 8, 437–449.

    Article  PubMed  CAS  Google Scholar 

  9. Collins S. R., Miller K. M., Maas N. L., Roguev A., Fillingham J., Chu C. S., Schuldiner M., Gebbia M., Recht J., Shales M., Ding H., Xu H., Han J., Ingvarsdottir K., Cheng B., Andrews B., Boone C., Berger S. L., Hieter P., Zhang Z., Brown G. W., Ingles C. J., Emili A., Allis C. D., Toczyski D. P., Weissman J. S., Greenblatt J. F., Krogan N. J. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446, 806–810.

    Article  PubMed  CAS  Google Scholar 

  10. Fiedler D., Braberg H., Mehta M., Chechik G., Cagney G., Mukherjee P., Silva A. C., Shales M., Collins S. R., van Wageningen S., Kemmeren P., Holstege F. C., Weissman J. S., Keogh M. C., Koller D., Shokat K. M., Krogan N. J. (2009) Functional organization of the S. cerevisiae phosphorylation network. Cell 136, 952–963.

    Google Scholar 

  11. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006.0008.

    Google Scholar 

  12. Hartwell L. H., Hopfield J. J., Leibler S., Murray A. W. (1999) From molecular to modular cell biology. Nature 402, C47-52.

    Article  PubMed  CAS  Google Scholar 

  13. Mani R., St Onge R. P., Hartman J. L., Giaever G., Roth F. P. (2008) Defining genetic interaction. Proc Natl Acad Sci USA 105, 3461–3466.

    Google Scholar 

  14. Kuzminov A. (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63, 751–813.

    PubMed  CAS  Google Scholar 

  15. Seoighe C., Wolfe K. H. (1998) Extent of genomic rearrangement after genome duplication in yeast. Proc Natl Acad Sci USA 95, 4447–4452.

    Article  PubMed  CAS  Google Scholar 

  16. Dixon S. J., Costanzo M., Baryshnikova A., Andrews B., Boone C. (2009) Systematic mapping of genetic interaction networks. Annu Rev Genet 43, 601–625.

    Article  PubMed  CAS  Google Scholar 

  17. Dixon S. J., Fedyshyn Y., Koh J. L., Prasad T. S., Chahwan C., Chua G., Toufighi K., Baryshnikova A., Hayles J., Hoe K. L., Kim D. U., Park H. O., Myers C. L., Pandey A., Durocher D., Andrews B. J., Boone C. (2008) Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes. Proc Natl Acad Sci USA 105, 16653–16658.

    Article  PubMed  CAS  Google Scholar 

  18. Cork J. M., Purugganan M. D. (2004) The evolution of molecular genetic pathways and networks. Bioessays 26, 479–484.

    Article  PubMed  CAS  Google Scholar 

  19. Costanzo M., Baryshnikova A., Bellay J., Kim Y., Spear E. D., Sevier C. S., Ding H., Koh J. L., Toufighi K., Mostafavi S., Prinz J., St Onge R. P., VanderSluis B., Makhnevych T., Vizeacoumar F. J., Alizadeh S., Bahr S., Brost R. L., Chen Y., Cokol M., Deshpande R., Li Z., Lin Z. Y., Liang W., Marback M., Paw J., San Luis B. J., Shuteriqi E., Tong A. H., van Dyk N., Wallace I. M., Whitney J. A., Weirauch M. T., Zhong G., Zhu H., Houry W. A., Brudno M., Ragibizadeh S., Papp B., Pal C., Roth F. P., Giaever G., Nislow C., Troyanskaya O. G., Bussey H., Bader G. D., Gingras A. C., Morris Q. D., Kim P. M., Kaiser C. A., Myers C. L., Andrews B. J., Boone C. (2010) The genetic landscape of a cell. Science 327, 425–431.

    Google Scholar 

  20. Pan X., Yuan D. S., Xiang D., Wang X., Sookhai-Mahadeo S., Bader J. S., Hieter P., Spencer F., Boeke J. D. (2004) A robust toolkit for functional profiling of the yeast genome. Mol Cell 16, 487–496.

    Article  PubMed  CAS  Google Scholar 

  21. Tong A. H., Evangelista M., Parsons A. B., Xu H., Bader G. D., Page N., Robinson M., Raghibizadeh S., Hogue C. W., Bussey H., Andrews B., Tyers M., Boone C. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368.

    Article  PubMed  CAS  Google Scholar 

  22. Tong A. H., Lesage G., Bader G. D., Ding H., Xu H., Xin X., Young J., Berriz G. F., Brost R. L., Chang M., Chen Y., Cheng X., Chua G., Friesen H., Goldberg D. S., Haynes J., Humphries C., He G., Hussein S., Ke L., Krogan N., Li Z., Levinson J. N., Lu H., Menard P., Munyana C., Parsons A. B., Ryan O., Tonikian R., Roberts T., Sdicu A. M., Shapiro J., Sheikh B., Suter B., Wong S. L., Zhang L. V., Zhu H., Burd C. G., Munro S., Sander C., Rine J., Greenblatt J., Peter M., Bretscher A., Bell G., Roth F. P., Brown G. W., Andrews B., Bussey H., Boone C. (2004) Global mapping of the yeast genetic interaction network. Science 303, 808–813.

    Article  PubMed  CAS  Google Scholar 

  23. Schuldiner M., Collins S. R., Thompson N. J., Denic V., Bhamidipati A., Punna T., Ihmels J., Andrews B., Boone C., Greenblatt J. F., Weissman J. S., Krogan N. J. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123, 507–519.

    Article  PubMed  CAS  Google Scholar 

  24. Wilmes G. M., Bergkessel M., Bandyopadhyay S., Shales M., Braberg H., Cagney G., Collins S. R., Whitworth G. B., Kress T. L., Weissman J. S., Ideker T., Guthrie C., Krogan N. J. (2008) A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol Cell 32, 735–746.

    Article  PubMed  CAS  Google Scholar 

  25. Butland G., Babu M., Díaz-Mejía J. J., Bohdana F., Phanse S., Gold B., Yang W., Li J., Gagarinova A. G., Pogoutse O., Mori H., Wanner B. L., Lo H., Wasniewski J., Christopolous C., Ali M., Venn P., Safavi-Naini A., Sourour N., Caron S., Choi J. Y., Laigle L., Nazarians-Armavil A., Deshpande A., Joe S., Datsenko K. A., Yamamoto N., Andrews B. J., Boone C., Ding H., Sheikh B., Moreno-Hagelseib G., Greenblatt J. F., Emili A. (2008) eSGA: E. coli synthetic genetic array analysis. Nat Methods 5, 789–795.

    Google Scholar 

  26. Typas A., Nichols R. J., Siegele D. A., Shales M., Collins S. R., Lim B., Braberg H., Yamamoto N., Takeuchi R., Wanner B. L., Mori H., Weissman J. S., Krogan N. J., Gross C. A. (2008) High-throughput, quantitative analyses of genetic interactions in E. coli. Nat Methods 5, 781–787.

    Google Scholar 

  27. Davierwala A. P., Haynes J., Li Z., Brost R. L., Robinson M. D., Yu L., Mnaimneh S., Ding H., Zhu H., Chen Y., Cheng X., Brown G. W., Boone C., Andrews B. J., Hughes T. R. (2005) The synthetic genetic interaction spectrum of essential genes. Nat Genet 37, 1147–1152.

    Article  PubMed  CAS  Google Scholar 

  28. Breslow D. K., Cameron D. M., Collins S. R., Schuldiner M., Stewart-Ornstein J., Newman H. W., Braun S., Madhani H. D., Krogan N. J., Weissman J. S. (2008) A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. Nat Methods 5, 711–718.

    Article  PubMed  CAS  Google Scholar 

  29. Firth N., Ippen-Ihler K. Skurray R.A. (1996) Structure and function of the F-factor and mechanism of conjugation. Escherichia coli and Salmonella: Cellular and Molecular Biology, Vol. 1 (Neidhardt, F.C., Ed.), ASM Press, Washington, DC, 2377–2401.

    Google Scholar 

  30. Ippen-Ihler K. A., Minkley E. G., Jr. (1986) The conjugation system of F, the fertility factor of Escherichia coli. Annu Rev Genet 20, 593–624.

    Article  PubMed  CAS  Google Scholar 

  31. Chumley F. G., Menzel R., Roth J. R. (1979) Hfr Formation Directed by Tn10. Genetics 91, 639–655.

    PubMed  CAS  Google Scholar 

  32. Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L. (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA 97, 5978–5983.

    Article  PubMed  CAS  Google Scholar 

  33. Johnson D. C., Dean D. R., Smith A. D., Johnson M. K. (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74, 247–281.

    Article  PubMed  CAS  Google Scholar 

  34. Babu M., Díaz-Mejía J. J., Phanse S., Vlasblom J., Gagarinova A., Graham C., Ding H., Hu P., Yousif F., Nazarians-Armavil A., Pogoutse O., Ali M., Peer A., Margalit H., Wodak S. J., Moreno-Hagelsieb G., Greenblatt J. F., Emili A. (2010) Genetic interaction profiling reveals the global functional organization of cell-envelope pathways in Escherichia coli. Cell (Submitted).

    Google Scholar 

  35. Roguev A., Bandyopadhyay S., Zofall M., Zhang K., Fischer T., Collins S. R., Qu H., Shales M., Park H. O., Hayles J., Hoe K. L., Kim D. U., Ideker T., Grewal S. I., Weissman J. S., Krogan N. J. (2008) Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast. Science 322, 405–510.

    Article  PubMed  CAS  Google Scholar 

  36. van Opijnen T., Bodi K. L., Camilli A. (2009) Tn-seq: high-throughput parallel sequencing for fitness and genetic interaction studies in microorganisms. Nat Methods 6, 767–772.

    Article  PubMed  Google Scholar 

  37. St Onge R. P., Mani R., Oh J., Proctor M., Fung E., Davis R. W., Nislow C., Roth F. P., Giaever G. (2007) Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat Genet 39, 199–206.

    Google Scholar 

  38. Datsenko K. A., Wanner B. L. (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97, 6640–6645.

    Article  PubMed  CAS  Google Scholar 

  39. Butland G., Peregrín-Alvarez J. M., Li J., Yang W., Yang X., Canadien V., Starostine A., Richards D., Beattie B., Krogan N., Davey M., Parkinson J., Greenblatt J., Emili A. (2005) Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–537.

    Google Scholar 

  40. Collins S. R., Schuldiner M., Krogan N. J., Weissman J. S. (2006) A strategy for extracting and analyzing large-scale quantitative epistatic interaction data. Genome Biol 7, R63.

    Article  PubMed  Google Scholar 

  41. Ma X., Tarone A. M., Li W. (2008) Mapping genetically compensatory pathways from synthetic lethal interactions in yeast. PLoS One 3, e1922.

    Article  PubMed  Google Scholar 

  42. Kanehisa M. (2002) The KEGG database. Novartis Found Symp 247, 91–101; discussion 101–3, 119–28, 244–252.

    Google Scholar 

  43. Keseler I. M., Bonavides-Martinez C., Collado-Vides J., Gama-Castro S., Gunsalus R. P., Johnson D. A., Krummenacker M., Nolan L. M., Paley S., Paulsen I. T., Peralta-Gil M., Santos-Zavaleta A., Shearer A. G., Karp P. D. (2009) EcoCyc: a comprehensive view of Escherichia coli biology. Nucleic Acids Res 37, D464-470.

    Article  PubMed  CAS  Google Scholar 

  44. Serres M. H., Riley M. (2000) MultiFun, a multifunctional classification scheme for Escherichia coli K-12 gene products. Microb Comp Genomics 5, 205–222.

    PubMed  CAS  Google Scholar 

  45. Le Meur N., Gentleman R. (2008) Modeling synthetic lethality. Genome Biol 9, R135.

    Article  PubMed  Google Scholar 

  46. Benjamini Y., Yekutieli D. (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics 29, 1165–1188.

    Article  Google Scholar 

  47. Saka K., Tadenuma M., Nakade S., Tanaka N., Sugawara H., Nishikawa K., Ichiyoshi N., Kitagawa M., Mori H., Ogasawara N., Nishimura A. (2005) A complete set of Escherichia coli open reading frames in mobile plasmids facilitating genetic studies. DNA Res 12, 63–68.

    Article  PubMed  CAS  Google Scholar 

  48. Subramanian A., Tamayo P., Mootha V. K., Mukherjee S., Ebert B. L., Gillette M. A., Paulovich A., Pomeroy S. L., Golub T. R., Lander E. S., Mesirov J. P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102, 15545–15550.

    Article  PubMed  CAS  Google Scholar 

  49. Wong S. L., Zhang L. V., Tong A. H., Li Z., Goldberg D. S., King O. D., Lesage G., Vidal M., Andrews B., Bussey H., Boone C., Roth F. P. (2004) Combining biological networks to predict genetic interactions. Proc Natl Acad Sci USA 101, 15682–15687.

    Article  PubMed  CAS  Google Scholar 

  50. von Mering C., Jensen L. J., Kuhn M., Chaffron S., Doerks T., Kruger B., Snel B., Bork P. (2007) STRING 7--recent developments in the integration and prediction of protein interactions. Nucleic Acids Res 35, D358–362.

    Article  Google Scholar 

Download references

Acknowledgments

We thank members of the Emili and Jack Greenblatt laboratories for assistance and advice. AG is a recipient of Vanier Canada Graduate Scholarship. This work was supported by a Canadian Institute of Health Research (CIHR) grant (MOB-82852) to JG and AE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Emili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Babu, M., Gagarinova, A., Greenblatt, J., Emili, A. (2011). Array-Based Synthetic Genetic Screens to Map Bacterial Pathways and Functional Networks in Escherichia coli . In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_9

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics