Skip to main content

ClosTron-Mediated Engineering of Clostridium

  • Protocol
  • First Online:
Book cover Strain Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 765))

Abstract

The genus Clostridium is a diverse assemblage of Gram positive, anaerobic, endospore-forming bacteria. Whilst certain species have achieved notoriety as important animal and human pathogens (e.g. Clostridium difficile, Clostridium botulinum, Clostridium tetani, and Clostridium perfringens), the vast majority of the genus are entirely benign, and are able to undertake all manner of useful biotransformations. Prominent amongst them are those species able to produce the biofuels, butanol and ethanol from biomass-derived residues, such as Clostridium acetobutylicum, Clostridium beijerinkii, Clostridium thermocellum, and Clostridium phytofermentans. The prominence of the genus in disease and biotechnology has led to the need for more effective means of genetic modification. The historical absence of methods based on conventional strategies for “knock-in” and “knock-out” in Clostridium has led to the adoption of recombination-independent procedures, typified by ClosTron technology. The ClosTron uses a retargeted group II intron and a retro-transposition-activated marker to selectively insert DNA into defined sites within the genome, to bring about gene inactivation and/or cargo DNA delivery. The procedure is extremely efficient, rapid, and requires minimal effort by the operator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dürre P. (2005) Handbook on Clostridia, CRC Press, New York. 2005.

    Google Scholar 

  2. Onderdonk A.B., and Allen S.D. (1994) Clostridium. Manual of clinical microbiology. In: Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolken RH, editors. 6 th ed. Washington, DC: ASM Press; p. 1210.

    Google Scholar 

  3. Dürre P. (2008) Fermentative butanol production: bulk chemical and biofuel. Ann. N. Y. Acad. Sci. 1125, 353–362.

    Article  PubMed  Google Scholar 

  4. Demain A.L., Newcomb M., and Wu J.H.D. (2005) Cellulase, clostridia, and ethanol. Microbiol. Mol. Biol. Rev. 69, 124154.

    Article  PubMed  CAS  Google Scholar 

  5. Minton N.P. (2003) Nature Rev. Microbiol. 1, 237–242.

    CAS  Google Scholar 

  6. Johnson E.A. (2005) Clostridium botulinum neurotoxins – applications in medicine and potential agents of bioterrorism. Clin. Microbiol. News. 27, 147–151.

    Article  Google Scholar 

  7. Hurst L.C., Badalamente M.A., Hentz V.R., Hotchkiss R.N., Kaplan T.T.D., Meals R.A., Smith T.M., and Rodzvilla J. (2009) Injectable collagenase Clostridium histolyticum for Dupuytren’s contracture. N Engl J Med 361, 968–979.

    Article  PubMed  CAS  Google Scholar 

  8. Heap J.T., Cartman S.T., Pennington O.J., Cooksley C.M., Scott J.C., Blount B., Burns D., and Minton N.P. (2008) Development of genetic knock-out systems for clostridia. In: Bruggermann, H, Gottschalk, G. (Eds), Clostridia: Molecular biology in the post-genomic era. Caister Academic Press. Norfolk, UK, pp. 179–198.

    Google Scholar 

  9. Karberg M., Guo H., Zhong J., Coon R., Perutka J., and Lambowitz A.M. (2001) Group II introns as controllable gene targeting vectors for genetic manipulation of bacteria. Nature Biotechnol. 19, 1162–7.

    Article  CAS  Google Scholar 

  10. Zhong J., Karberg M., and Lambowitz A.M. (2003) Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Res. 31, 1656–64.

    Article  PubMed  CAS  Google Scholar 

  11. Mohr G., Smith D., Belfort M., and Lambowitz A.M. (2000) Rules for DNA target-site recognition by a lactococcal group II intron enable retargeting of the intron to specific DNA sequences. Genes Dev. 14, 559–73.

    PubMed  CAS  Google Scholar 

  12. Perutka J., Wang W., Goerlitz D., and Lambowitz A.M. (2004) Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. J Mol Biol. 336, 421–39.

    Article  PubMed  CAS  Google Scholar 

  13. Heap J.T., Pennington O.J., Cartman S.T., Carter G.P., and Minton N.P. (2007) The ClosTron: a universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods. 70, 452–64.

    Article  PubMed  CAS  Google Scholar 

  14. Heap J.T., Kuehne S.A., Ehsaan M., Cartman S.T., Cooksley C.M., Scott J.C., and Minton N.P. (2010) The ClosTron: Mutagenesis in Clostridium refined and streamlined. J. Microbiol Methods. 80, 49–55.

    Article  PubMed  CAS  Google Scholar 

  15. Heap T.J., Pennington O.J., Cartman S.T., and Minton N.P. (2009) “A modular system for Clostridium shuttle plasmids. J. Microbiol. Methods 78, 79–85.

    Article  PubMed  CAS  Google Scholar 

  16. Bradshaw M., Marshall K.M., Heap J.T., Tepp W.H., Minton N.P., and Johnson E.A. (2010) Construction of a Nontoxigenic Clostridium botulinum Strain for Food Challenge Studies Appl. Environ. Microbiol. 76, 387–93.

    Article  CAS  Google Scholar 

  17. Burns D.A., Heap J.T., and Minton N.P. (2010) SleC is essential for germination of Clostridium difficile spores in nutrient-rich medium supplemented with the bile salt taurocholate. J. Bacteriol. 192, 657–64.

    Article  PubMed  CAS  Google Scholar 

  18. Cooksley C.M., Davis I.J., Winzer K., Chan W.C., Peck M.W., and Minton N.P. (2010) Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Appl. Environ. Microbiol. 76, 4448–60.

    Article  PubMed  CAS  Google Scholar 

  19. Camiade E., Peltier J., Bourgeois I., Couture-Tosi E., Courtin P., Antunes A., Chapot-Chartier M.P., Dupuy B., and Pons J.L. (2010) Characterization of Acp, a peptidoglycan hydrolase of Clostridium perfringens with N-acetylglucosaminidase activity that is implicated in cell separation and stress-induced autolysis. J Bacteriol. 192, 2373–84.

    Article  PubMed  CAS  Google Scholar 

  20. Dong H., Zhang Y., Dai Z., and Li Y. (2010) Engineering clostridium strain to accept unmethylated DNA. PLoS One. 5, e9038.

    Article  PubMed  Google Scholar 

  21. Kirby J.M., Ahern H., Roberts A.K., Kumar V., Freeman Z., Acharya K.R., and Shone C.C. (2009) Cwp84, a surface-associated cysteine protease, plays a role in the maturation of the surface layer of Clostridium difficile. J. Biol. Chem. 284, 34666–34673.

    Article  PubMed  CAS  Google Scholar 

  22. Underwood S., Guan S., Vijayasubhash V., Baines S.D., Graham L., Lewis R.J., Wilcox M.H., and Stephenson K. (2009) Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J.Bacteriol. 191, 7296–7305.

    Article  PubMed  CAS  Google Scholar 

  23. Emerson J.E., Reynolds C.B., Fagan R.P., Shaw H.A., Goulding D., and Fairweather N.F. (2009) A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein. Mol. Microbiol. 74, 541–556.

    Article  PubMed  CAS  Google Scholar 

  24. Twine S.M., Reid C.W., Aubry A., McMullin D.R., Fulton K.M., Austin J., and Logan S.M. (2009) Motility and flagellar glycosylation in Clostridium difficile. J. Bacteriol. 191, 7050–7062.

    Article  PubMed  CAS  Google Scholar 

  25. Warrens A.N., Jones M.D., and Lechler R.I. (1997) Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene. 186, 29–35.

    Article  PubMed  CAS  Google Scholar 

  26. Purdy D., O’Keeffe T.A., Elmore M., Herbert M., McLeod A., Bokori-Brown M., Ostrowski A., and Minton N.P. (2002) Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol. 46, 439–452.

    Article  PubMed  CAS  Google Scholar 

  27. Williams D.R., Young D.I., and Young M. (1990) Conjugative plasmid transfer from Escherichia coli to Clostridium acetobutylicum. J. Gen. Microbiol. 136, 819–26.

    PubMed  CAS  Google Scholar 

  28. Theys J., Pennington O.P, Dubois L., Anlezark G., Vaughan T., Mengesha A., Landuyt W., Anné J., Burke P.J., Dûrre P., Wouters B.G., Minton N.P., and Lambin P. (2006) Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. British J. Cancer 95, 1212–9.

    Article  CAS  Google Scholar 

  29. Davis T.O., Henderson I., Brehm J.K., and Minton N.P. (2000) Development of a transformation and gene reporter system for group II, non-proteolytic Clostridium botulinum type B strains. J. Mol. Microbiol. Biotechnol. 2, 59–69.

    PubMed  CAS  Google Scholar 

  30. Mauchline M.L., Davis T.O., and Minton N.P. (1999) Clostridia. In: Manual of Industrial Microbiology and Biotechnology, Demain AL, Davies JE (eds), ASM Press, pp. 475–492.

    Google Scholar 

  31. Mermelstein L.D., and Papoutsakis E.T. (1993) In vivo methylation in Escherichia coli by the Bacillus subtilis phage ϕ3tI methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 59, 1077–1081.

    PubMed  CAS  Google Scholar 

  32. Hussain H.A., Roberts A.P., and Mullany P. (2005) Generation of an Em-sensitive derivative of Clostridium difficile strain 630 (630Deltaerm) and demonstration that the conjugative transposon Tn916DeltaE enters the genome of this strain at multiple sites. J. Med. Microbiol. 54, 137–141.

    Article  PubMed  CAS  Google Scholar 

  33. Cartman S.T., Heap J.T., Kuehne S.A., Cockayne A., and Minton N.P. (2010) The Emergence of ‘Hypervirulence’ in Clostridium difficile. Int. J. Med. Microbiol. 300, 387395.

    Article  PubMed  Google Scholar 

  34. Kuehne S.A., Cartman S.T., Heap J.T., Kelly M.L., Cockayne A., and Minton N.P. (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711–713.

    Google Scholar 

  35. Cooksley C.M., Davis I.J., Winzer K., Cockayne A., Chan W.C., Peck M.W., and Minton N.P. (2010) A putative agrBD signalling system regulates toxin production and sporulation in proteolytic Clostridium botulinum. J Bacteriol 76, 4448–4460.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of UK Medical Research Council (G0601176), the European Union (HEALTH-F3-2008-223585), the UK Biotechnology and Biological Sciences Research Council (BB/E021271/1, BB/D001498/1, BB/F003390/1, and BB/G016224/1), SysMO (Systems Biology of Microorganisms) and Morvus Technologies Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Minton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kuehne, S.A., Heap, J.T., Cooksley, C.M., Cartman, S.T., Minton, N.P. (2011). ClosTron-Mediated Engineering of Clostridium . In: Williams, J. (eds) Strain Engineering. Methods in Molecular Biology, vol 765. Humana Press. https://doi.org/10.1007/978-1-61779-197-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-197-0_23

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-196-3

  • Online ISBN: 978-1-61779-197-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics