Skip to main content

Enzymatic Systems with Homology to Nitrogenase

  • Protocol
  • First Online:
Book cover Nitrogen Fixation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 766))

Abstract

Nitrogenase-like dark operative protochlorophyllide oxidoreductase (DPOR) is involved in the two-electron reduction of protochlorophyllide to form chlorophyllide during chlorophyll biosynthesis. Formation of bacteriochlorophyll additionally requires a structurally related enzyme system which is termed chlorophyllide oxidoreductase (COR). During DPOR catalysis, the homodimeric subunit ChlL2 transfers electrons to the corresponding heterotetrameric catalytic subunit (ChlN/ChlB)2. Analogously, subunit BchX2 of the COR enzymes delivers electrons to subunit (BchY/BchZ)2. The ChlL2 protein is a dynamic switch protein triggering the ATP-dependent transfer of electrons via a [4Fe–4S] cluster onto a second [4Fe–4S] cluster located on subunit (ChlN/ChlB)2. This initial electron transfer step of DPOR catalysis clearly resembles nitrogenase catalysis. However, the subsequent substrate reduction process was proposed to be unrelated since no molybdenum-containing cofactor or a P-cluster equivalent is employed. To investigate the transient interaction of both subcomplexes ChlL2 and (ChlN/ChlB)2 and the resulting electron transfer processes, the ternary DPOR enzyme holocomplex was trapped as an octameric (ChlN/ChlB)2(ChlL2)2 complex after incubation with non-hydrolyzable ATP analogs. Electron paramagnetic resonance spectroscopic experiments of various DPOR complexes in combination with circular dichroism spectroscopic experiments of the ChlL2 protein revealed a detailed redox catalytic cycle for nucleotide-dependent DPOR catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Field CB, Behrenfeld MJ, Randerson JT et al (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240

    Article  PubMed  CAS  Google Scholar 

  2. Bröcker MJ, Virus S, Ganskow S et al (2008) ATP-driven reduction by dark-operative protochlorophyllide oxidoreductase from chlorobium tepidum mechanistically resembles nitrogenase catalysis. J Biol Chem 283:10559–10567

    Article  PubMed  Google Scholar 

  3. Burke DH, Hearst JE, Sidow A (1993) Early evolution of photosynthesis: clues from nitrogenase and chlorophyll iron proteins. Proc Natl Acad Sci USA 90:7134–7138

    Article  PubMed  CAS  Google Scholar 

  4. Fujita Y, Matsumoto H, Takahashi Y et al (1993) Identification of a nifDK-like gene (ORF467) involved in the biosynthesis of chlorophyll in the cyanobacterium Plectonema boryanum. Plant Cell Physiol 34:305–314

    PubMed  CAS  Google Scholar 

  5. Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosyn Res 60:43–73

    Article  CAS  Google Scholar 

  6. Belyaeva OB, Griffiths WT, Kovalev JV et al (2001) Participation of free radicals in photoreduction of protochlorophyllide to chlorophyllide in an artificial pigment-protein complex. Biochemistry (Moscow) 66:173–177

    Article  CAS  Google Scholar 

  7. Heyes DJ, Hunter CN, van Stokkum IH et al (2003) Ultrafast enzymatic reaction dynamics in protochlorophyllide oxidoreductase. Nat Struct Biol 10:491–492

    Article  PubMed  CAS  Google Scholar 

  8. Heyes DJ, Ruban AV, Wilks HM et al (2002) Enzymology below 200 K: the kinetics and thermodynamics of the photochemistry catalyzed by protochlorophyllide oxidoreductase. Proc Natl Acad Sci USA 99:11145–11150

    Article  PubMed  CAS  Google Scholar 

  9. Rüdiger W (2003) The last steps of chlorophyll biosynthesis. In: Kadish KM, Smith KM, Guilard R (eds) Porphyrin Handbook, Chlorophylls and Bilins: Biosynthesis, Synthesis, and degradation, pp. 71–108. Academic, New York, NY

    Google Scholar 

  10. Masuda T, Takamiya K (2004) Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms. Photosyn Res 81:1–29

    Article  PubMed  CAS  Google Scholar 

  11. Apel K (2001) Chlorophyll Biosynthesis – metabolism and strategies of higher plants to avoid photooxidative stress. In: Aro EM, Anderson B (eds) Regulation of Photosynthesis, pp. 235–252. Kluwer, Dordrecht

    Google Scholar 

  12. Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37:411–421

    PubMed  CAS  Google Scholar 

  13. Schoefs B (2001) The protochlorophyllide-chlorophyllide cycle. Photosyn Res 70:257–271

    Article  PubMed  CAS  Google Scholar 

  14. Suzuki JY, Bollivar DW, Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31:61–89

    Article  PubMed  CAS  Google Scholar 

  15. Bollivar DW, Suzuki JY, Beatty JT et al (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237:622–640

    Article  PubMed  CAS  Google Scholar 

  16. Sarma R, Barney BM, Hamilton TL et al (2008) Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein. Biochemistry 47:13004–13015

    Article  PubMed  CAS  Google Scholar 

  17. Fujita Y, Bauer CE (2000) Reconstitution of light-independent protochlorophyllide reductase from purified bchl and BchN-BchB subunits. In vitro confirmation of nitrogenase-like features of a bacteriochlorophyll biosynthesis enzyme. J Biol Chem 275:23583–23588

    Article  PubMed  CAS  Google Scholar 

  18. Wätzlich D, Bröcker MJ, Uliczka F et al (2009) Chimeric nitrogenase-like enzymes of (bacterio)chlorophyll biosynthesis. J Biol Chem 284:15530–15540

    Article  PubMed  Google Scholar 

  19. Bröcker MJ, Waetzlich D, Saggu M et al (2010) Biosynthesis of (bacterio)chlorophylls: ATP-dependent transient subunit interaction and electron transfer of dark operative protochlorophyllide Oxidoreductase. J Biol Chem 285:8268–8277

    Article  PubMed  Google Scholar 

  20. Igarashi RY, Seefeldt LC (2003) Nitrogen fixation: the mechanism of the Mo-dependent nitrogenase. Crit Rev Biochem Mol Biol 38:351–384

    Article  PubMed  CAS  Google Scholar 

  21. Howard JB, Rees DC (1994) Nitrogenase: a nucleotide-dependent molecular switch. Annu Rev Biochem 63:235–264

    Article  PubMed  CAS  Google Scholar 

  22. Bröcker MJ, Wätzlich D, Uliczka F et al (2008) Substrate recognition of nitrogenase-like dark operative protochlorophyllide oxidoreductase from Prochlorococcus marinus. J Biol Chem 283:29873–29881

    Article  PubMed  Google Scholar 

  23. Rainbird RM, Hitz WD, Hardy RW (1984) Experimental determination of the respiration associated with soybean/rhizobium nitrogenase function, nodule maintenance, and total nodule nitrogen fixation. Plant Physiol 75:49–53

    Article  PubMed  CAS  Google Scholar 

  24. Rees DC, Howard JB (2000) Nitrogenase: standing at the crossroads. Curr Opin Chem Biol 4:559–566

    Article  PubMed  CAS  Google Scholar 

  25. Erickson JA, Nyborg AC, Johnson JL et al (1999) Enhanced efficiency of ATP hydrolysis during nitrogenase catalysis utilizing reductants that form the all-ferrous redox state of the Fe protein. Biochemistry 38:14279–14285

    Article  PubMed  CAS  Google Scholar 

  26. Nomata J, Ogawa T, Kitashima M et al (2008) NB-protein (BchN-BchB) of dark operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters. FEBS Lett 582:1346–1350

    Article  PubMed  CAS  Google Scholar 

  27. Walther J, Bröcker MJ, Wätzlich D et al (2009) Protochlorophyllide: a new photosensitizer for the photodynamic inactivation of Gram-positive and Gram-negative bacteria. FEMS Microbiol Lett 290:156–163

    Article  PubMed  CAS  Google Scholar 

  28. Nomata J, Kitashima M, Inoue K et al (2006) Nitrogenase Fe protein-like Fe-S cluster is conserved in L-protein (BchL) of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. FEBS Lett 580:6151–6154

    Article  PubMed  CAS  Google Scholar 

  29. Kim EJ, Kim JS, Lee IH et al (2008) Superoxide generation by chlorophyllide a reductase of Rhodobacter sphaeroides. J Biol Chem 283:3718–3730

    Article  PubMed  CAS  Google Scholar 

  30. Raymond J, Siefert JL, Staples CR et al (2004) The natural history of nitrogen fixation. Mol Biol Evol 21:541–554

    Article  PubMed  CAS  Google Scholar 

  31. Staples CR, Lahiri S, Raymond J et al (2007) Expression and association of group IV nitrogenase NifD and NifH homologs in the non-nitrogen-fixing Archaeon Methanocaldococcus jannaschii. J Bacteriol 189:7392–7398

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Moser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Moser, J., Bröcker, M.J. (2011). Enzymatic Systems with Homology to Nitrogenase. In: Ribbe, M. (eds) Nitrogen Fixation. Methods in Molecular Biology, vol 766. Humana Press. https://doi.org/10.1007/978-1-61779-194-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-194-9_5

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-193-2

  • Online ISBN: 978-1-61779-194-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics