Skip to main content

Studying Permeability in a Commonly Used Epithelial Cell Line: T84 Intestinal Epithelial Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 763))

Abstract

The integrity, or barrier function, of the intestinal epithelium is of paramount importance in ­maintaining good health. This is largely imparted by a single layer of epithelial cells linked by the transmembrane tight junction protein complex near their apical surface. Disruption of epithelial permeability via the tight junctions can contribute to disease progression. The cytokine IFNγ is involved in many inflammatory processes and has been shown to dramatically increase permeability via changes at the tight junction in experimental models. One of its key effectors is the transcription factor, ­IRF-1. In our studies of the role of IRF-1 in barrier function using the human T84 intestinal epithelial cell monolayer model, we have found that induction of IRF-1 alone is insufficient to change permeability and that if IRF-1 is involved in mediating the permeability effects of IFNγ, then other factors must also be required.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Tsukita, S., Furuse, M., and Itoh, M. (2001) Multifunctional strands in tight junctions, Nat Rev Mol Cell Biol 2, 285–293.

    Article  PubMed  CAS  Google Scholar 

  2. Capaldo, C. T., and Nusrat, A. (2009) Cytokine regulation of tight junctions, Biochim. Biophys. Acta 1788, 864–871.

    Article  PubMed  CAS  Google Scholar 

  3. Al-Sadi, R., Boivin, M., and Ma, T. (2009) Mechanism of cytokine modulation of epithelial tight junction barrier, Front Biosci 14, 2765–2778.

    Article  PubMed  CAS  Google Scholar 

  4. Schulzke, J. D., Ploeger, S., Amasheh, M., Fromm, A., Zeissig, S., Troeger, H., Richter, J., Bojarski, C., Schumann, M., and Fromm, M. (2009) Epithelial tight junctions in intestinal inflammation, Ann N Y Acad Sci 1165, 294–300.

    Article  PubMed  Google Scholar 

  5. Clayburgh, D. R., Shen, L., and Turner, J. R. (2004) A porous defense: the leaky epithelial barrier in intestinal disease, Lab Invest 84, 282–291.

    Article  PubMed  CAS  Google Scholar 

  6. Marchiando, A. M., Graham, W. V., and Turner, J. R. (2010) Epithelial barriers in homeostasis and disease, Annu Rev Pathol 5, 119–144.

    Article  PubMed  CAS  Google Scholar 

  7. Deli, M. A. (2009) Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery, Biochim. Biophys. Acta 1788, 892–910.

    Article  PubMed  CAS  Google Scholar 

  8. Dharmsathaphorn, K., McRoberts, J. A., Mandel, K. G., Tisdale, L. D., and Masui, H. (1984) A human colonic tumor cell line that maintains vectorial electrolyte transport, Am J Physiol 246, G204–208.

    PubMed  CAS  Google Scholar 

  9. Dharmsathaphorn, K., and Madara, J. L. (1990) Established intestinal cell lines as model systems for electrolyte transport studies, Methods Enzymol 192, 354–389.

    Article  PubMed  CAS  Google Scholar 

  10. Hillgren, K. M., Kato, A., and Borchardt, R. T. (1995) In vitro systems for studying intestinal drug absorption, Med Res Rev 15, 83–109.

    Article  PubMed  CAS  Google Scholar 

  11. Harhaj, N. S., and Antonetti, D. A. (2004) Regulation of tight junctions and loss of ­barrier function in pathophysiology, Int. J. Biochem. Cell Biol. 36, 1206–1237.

    Article  PubMed  CAS  Google Scholar 

  12. Schroder, K., Hertzog, P. J., Ravasi, T., and Hume, D. A. (2004) Interferon-gamma: an overview of signals, mechanisms and functions, J Leukoc Biol 75, 163–189.

    Article  PubMed  CAS  Google Scholar 

  13. Adams, R. B., Planchon, S. M., and Roche, J. K. (1993) IFN-gamma modulation of epithelial barrier function. Time course, reversibility, and site of cytokine binding, J Immunol 150, 2356–2363.

    Google Scholar 

  14. Colgan, S. P., Parkos, C. A., Matthews, J. B., D’Andrea, L., Awtrey, C. S., Lichtman, A. H., Delp-Archer, C., and Madara, J. L. (1994) Interferon-gamma induces a cell surface phenotype switch on T84 intestinal epithelial cells, Am J Physiol 267, C402–410.

    PubMed  CAS  Google Scholar 

  15. Bruewer, M., Luegering, A., Kucharzik, T., Parkos, C. A., Madara, J. L., Hopkins, A. M., and Nusrat, A. (2003) Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms, J Immunol 171, 6164–6172.

    PubMed  CAS  Google Scholar 

  16. Youakim, A., and Ahdieh, M. (1999) Interferon-gamma decreases barrier function in T84 cells by reducing ZO-1 levels and disrupting apical actin, Am J Physiol 276, G1279–1288.

    PubMed  CAS  Google Scholar 

  17. Donato, R., Wood, S. A., Saunders, I., Gundsambuu, B., Yan Mak, K., Abbott, C. A., and Powell, B. C. (2009) Regulation of epithelial apical junctions and barrier function by Galpha13, Biochim. Biophys. Acta 1793, 1228–1235.

    Article  PubMed  CAS  Google Scholar 

  18. Drexler, H. G., and Uphoff, C. C. (2002) Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention, Cytotechnology 39, 75–90.

    Article  PubMed  CAS  Google Scholar 

  19. Sanders, S. E., Madara, J. L., McGuirk, D. K., Gelman, D. S., and Colgan, S. P. (1995) Assessment of inflammatory events in epithelial permeability: a rapid screening method using fluorescein dextrans, Epithelial Cell Biol 4, 25–34.

    PubMed  CAS  Google Scholar 

  20. Sander, G. R., Cummins, A. G., Henshall, T., and Powell, B. C. (2005) Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins, FEBS Lett 579, 4851–4855.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Dairy Australia and the Women’s and Children’s Hospital Foundation. R. Donato was supported by a Flinders University Faculty of Science and Engineering Research award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry C. Powell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Donato, R.P. et al. (2011). Studying Permeability in a Commonly Used Epithelial Cell Line: T84 Intestinal Epithelial Cells. In: Turksen, K. (eds) Permeability Barrier. Methods in Molecular Biology, vol 763. Humana Press. https://doi.org/10.1007/978-1-61779-191-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-191-8_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-190-1

  • Online ISBN: 978-1-61779-191-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics