Chromosome Formation During Fertilization in Eggs of the Teleost Oryzias latipes

  • Takashi IwamatsuEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 761)


Upon fertilization, eggs shift their cell cycle from the meiotic to the mitotic pattern for embryogenesis. The information on chromosome formation has been accumulated by various experiments using inhibitors to affect formation and behavior of chromosomes in the cycle of cell proliferation. Based on experimental results on meiosis and early stages of development of the teleost Oryzias latipes, we discuss the roles of the activities of histone H1 kinase, microtubule-associated protein kinase, DNA polymerase, DNA topoisomerase, and other cytoplasmic factors that play a crucial role in formation and separation of chromosomes.

Key words

Teleost meiosis fertilization DNA replication chromosomal formation chromosomal separation aphidicolin camptothecin 



The author is grateful to the collaborators Drs. T. Haraguchi, S. Ikegami, T. Kishimoto, H. Kobayashi, S. Oda, H. Ohta, Y. Shibata, and M. Yamashita for their help in preparing the manuscript.


  1. 1.
    Masui, Y. and Clarke, H.J. (1979) Oocyte maturation. Int. Rev. Cytol. 57, 185–282.PubMedGoogle Scholar
  2. 2.
    Yamashita, M. (2000) Toward modeling of a general mechanism of MPF formation during oocyte maturation in vertebrates. Zool. Sci. 17, 841–851.Google Scholar
  3. 3.
    Sagata, N., Oskarsson, M., Copeland, T., Brumbaugh, J. and Woude, G.F.V. (1988) Function of c-mos protooncogene product in meiotic maturation in Xenopus oocytes. Nature 335, 519–525.PubMedGoogle Scholar
  4. 4.
    Freeman, R.S., Kanki, J.P., Ballantyne, S.M., Pickham, K.M. and Donophue, D.J. (1989) Effects of the v-mos on Xenopus development: meiotic induction in oocytes and mitotic arrest in cleaving embryos. J. Cell Biol. 111, 533–541.Google Scholar
  5. 5.
    Sheets, M.D., Wu, M. and Wickens, M. (1995) Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation. Nature 274, 511–516.Google Scholar
  6. 6.
    Tokumoto, T., Yamashita, M., Tokumoto, M., Tanaka, H., Katsu, Y., Horiguchi, R., et al. (1997) Initiation of cyclin B degradation by the 26S proteasome upon egg activation. J. Cell Biol. 138, 1313–1322.PubMedGoogle Scholar
  7. 7.
    Josefsberg, L.B.-Y., Galiani, D., Dantes, A., Amsterdam, A. and Deckel, N. (2000) The proteasome is involved in the first metaphase-to-anaphase transition of meiosis in rat oocytes. Biol. Reprod. 62, 1270–1277.PubMedGoogle Scholar
  8. 8.
    Mueller, P.R., Coleman, T.R. and Dunphy, W.G. (1995) Cell cycle regulation of a Xenopus Wee1-like kinase. Mol. Biol. Cell 6, 119–134.PubMedGoogle Scholar
  9. 9.
    Longo, F.J. (1997) Fertilization. Chapman & Hall, New York, NY.Google Scholar
  10. 10.
    Iwamatsu, T. and Kobayashi, H. (2002) Electron microscopic observations of karyogamy in the fish egg. Dev. Growth Differ. 44, 357–363.PubMedGoogle Scholar
  11. 11.
    Clarke, H.J. and Masui, Y. (1986) Transformation of sperm nuclei to metaphase chromosomes in the cytoplasm of maturing oocytes of the mouse. J. Cell Biol. 102, 1039–1046.PubMedGoogle Scholar
  12. 12.
    Das, N.K. and Baker, C. (1976) Mitotic chromosome condensation in the sperm nucleus during postfertilization maturation division in Urechis eggs. J. Cell Biol. 68, 155–159.PubMedGoogle Scholar
  13. 13.
    Tchou, S. and Chen, C.H. (1942) Fertilization of artificially ovulated premature eggs of Bufo. Sci. Rec. China (K’e hsuch chi u) 1, 203–208.Google Scholar
  14. 14.
    Elinson, R.P. (1977) Fertilization of immature frog eggs: cleavage and development following subsequent activation. J. Embryol. Exp. Morphol. 37, 187–201.PubMedGoogle Scholar
  15. 15.
    Iwamatsu, T. and Chang, M.C. (1972) Sperm penetration in vitro of mouse oocytes at various times during maturation. J. Reprod. Fertil. 31, 237–247.PubMedGoogle Scholar
  16. 16.
    Abeydeera, L.R., Niwa, K. and Okuda, K. (1993) Maturation-promoting factor (MPF) is responsible for the transformation of sperm nuclei to metaphase chromosomes in maturing bovine oocytes in vitro. J. Reprod. Fertil. 98, 409–414.PubMedGoogle Scholar
  17. 17.
    Gurdon, J.B. (1968) Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. Exp. Morphol. 20, 401–414.PubMedGoogle Scholar
  18. 18.
    Ziegler, D. and Masui, Y. (1973) Control of chromosome behavior in amphibian oocytes. II. The effect of inhibitors of RNA and protein synthesis on the induction of chromosome condensation. J. Cell Biol. 68, 620–628.Google Scholar
  19. 19.
    Moriya, M. and Katagiri, Ch. (1976) Microinjection of toad sperm into oocytes undergoing maturation division. Dev. Growth Differ. 18, 349–356.Google Scholar
  20. 20.
    Masui, Y., Lohka, M.J. and Shuibuya, E.K. (1984) Roles of Ca ions and ooplasmic factors in the resumption of metaphase-arrested meiosis in Rana pipiens oocytes. Symp. Soc. Exp. Biol. 38, 45–66.PubMedGoogle Scholar
  21. 21.
    Lohka, M.J. and Masui, Y. (1984) Effects of Ca2+ ions on the formation of metaphase chromosomes and sperm pronuclei in cell-free preparations from unactivated Rana pipiens eggs. Dev. Biol. 103, 434–442.PubMedGoogle Scholar
  22. 22.
    Yamashita, M. (1983) Electron microscopic observations during monospermic fertilization process of the brittle-star Amphipholis kochii Lutken. J. Exp. Zool. 228, 109–120.Google Scholar
  23. 23.
    Iwamatsu, T. (1966) Role of the germinal vesicle materials on the acquisition of developmental capacity of the fish oocyte. Embryologia 9, 205–221.PubMedGoogle Scholar
  24. 24.
    Iwamatsu, T. and Ohta, T. (1980) The changes in sperm nuclei after penetrating fish oocytes matured without germinal vesicle material in their cytoplasm. Gamete Res. 3, 121–132.Google Scholar
  25. 25.
    Longo, F.J. (1973) The onset of DNA synthesis and its relation to morphogenetic events of the pronuclei in activated eggs of the sea urchin, Arbacia punctulata. Dev. Biol. 30, 56–67.PubMedGoogle Scholar
  26. 26.
    Longo, F.J. and Kuncle, M. (1978) Transformation of sperm nuclei upon insemination. Curr. Topics Dev. Biol. 12, 149–184.Google Scholar
  27. 27.
    Wolgemuth, D.J. (1983) Synthetic activities of the mammalian early embryo: molecular and genetic alterations following fertilization. In: Mechanisms and control of animal fertilization (J.F. Hartmann, Ed.). pp. 415–452, Academic Press, New York.Google Scholar
  28. 28.
    Ohsumi, K., Katagiri, Ch. and Yanagimachi, R. (1996) Development of pronuclei from human spermatozoa injected microsurgically into frog (Xenopus) eggs. J. Exp. Zool. 237, 319–325.Google Scholar
  29. 29.
    Kopecny, V. and Pavlok, A. (1975) Autoradiographic study of mouse spermatozoan arginine-rich nuclear protein in fertilization. J. Exp. Zool. 191, 85–96.PubMedGoogle Scholar
  30. 30.
    Poccia, D., Salik, J. and Krystal, G. (1981) Transitions in histone variants of the male pronucleus following fertilization and evidence for a maternal store of cleavage-stage histones in the sea urchin egg. Dev. Biol. 82, 287–296.PubMedGoogle Scholar
  31. 31.
    Rodman, T.C., Pruslin, F.H., Hoffmann, H.P. and Allfrey, V.G. (1981) Turnover of basic chromosomal proteins in fertilized eggs – a cytoimmunochemical study of events in vitro. J. Cell Biol. 90, 351–361.PubMedGoogle Scholar
  32. 32.
    Zirkin, B.R., Soucek, D.A., Chang, T.S.K. and Perreault, S.D. (1985) in vitro and in vivo studies of mammalian sperm nuclear decondensation. Gamete Res. 11, 349–365.Google Scholar
  33. 33.
    Ohsumi, K. and Katagiri, Ch. (1991) Occurrence of H1 subtypes specific to pronuclei and cleavage-stage cell nuclei of anuran amphibians. Dev. Biol. 147, 110–120.PubMedGoogle Scholar
  34. 34.
    Philpott, A. and Leno, G.H. (1992) Nucleoplasmin remodels sperm chromatin in Xenopus egg extracts. Cell 69, 759–767.PubMedGoogle Scholar
  35. 35.
    Luthardt, F.W. and Donahue, R.P. (1973) Pronuclear DNA synthesis in mouse eggs: an autoradiographic study. Exp. Cell Res. 82, 143–151.PubMedGoogle Scholar
  36. 36.
    Naish, S.J., Perreault, S.D., Foehner, L. and Zirkin, B.R. (1987) DNA synthesis in the fertilizing hamster sperm nucleus: sperm template availability and egg cytoplasmic control. Biol. Reprod. 36, 245–253.PubMedGoogle Scholar
  37. 37.
    Barnes, F.L., Callos, P., Powell, R., Westhusin, W.A. and Shepherd, D. (1993) Influence of recipient oocyte cell cycle stage on DNA synthesis, nuclear envelope breakdown, chromosome constitution, and development in nuclear transplant bovine embryos. Mol. Reprod. Dev. 36, 33–41.PubMedGoogle Scholar
  38. 38.
    Campbell, K.H.S., Loi, P., Cappai, P. and Wilmut, I. (1994) Improved development to blastocyst of ovine nuclear transfer embryos reconstructed during the presumptive S phase of enucleated activated oocytes. Biol. Reprod. 50, 1385–1393.PubMedGoogle Scholar
  39. 39.
    Laurincik J., Kopecny, V. and Hyttel, P. (1994) Pronucleus development an DNA synthesis in bovine zygotes in vitro. Theriogenology 42, 1285–1293.Google Scholar
  40. 40.
    Hirano, T. (2000) Chromosome cohesion, condensation, and separation. Annu. Rev. Biochem. 69, 115–144.PubMedGoogle Scholar
  41. 41.
    Iwamatsu, T., Shibata, Y. and Yamashita, M. (1999) Studies on fertilization of the teleost. II. Nuclear behavior and changes in histone H1 kinase. Dev. Growth Differ. 41, 473–482.PubMedGoogle Scholar
  42. 42.
    Nomura, A., Maruyama, Y.K. and Yoneda, M. (1991) Initiation of DNA replication cycle in fertilized eggs of the starfish, Asterina pectinifera. Dev. Biol. 143, 289–296.Google Scholar
  43. 43.
    Simmel, E.B. and Karnofsky, D.A. (1961) Observation on the uptake of tritiated thymidine in the pronuclei of fertilized sand dollar embryos. J. Biophys. Biochem. Cytol. 10, 59–65.PubMedGoogle Scholar
  44. 44.
    Oprecue, S. and Thibault, C. (1965) Duplication de l’AND dans les oeufs de lapine après la fecundation. Ann. Biol. Anim. Biochim. Biophys. 5, 151–156.Google Scholar
  45. 45.
    Howlett, S.K. and Bolton, V.N. (1985) Sequence and regulation of morphological and molecular events during the first cell cycle of mouse embryogenesis. J. Embryol. Exp. Morphol. 67, 175–206.Google Scholar
  46. 46.
    Abramczuk, J. and Sawicki, W. (1975) Pronuclear synthesis of DNA in fertilized and parthenogenetically activated mouse eggs: a cytophotometric study. Exp. Cell Res. 92, 361–372.PubMedGoogle Scholar
  47. 47.
    Balkan, W. and Martin, R.H. (1982) Timing of human sperm chromosome replication following fertilization of hamster eggs in vitro. Gamete Res. 6, 115–119.Google Scholar
  48. 48.
    Szollosi, D. (1966) Time and duration of DNA synthesis in rabbit eggs after sperm penetration. Anat. Rec. 154, 209–212.PubMedGoogle Scholar
  49. 49.
    Longo, F.J. and Plunkett, W. (1973) The onset of DNA synthesis and its relation to morphogenetic events of the pronuclei in activated eggs of the sea urchin, Arbacia punctulata. Dev. Biol. 30, 56–67.PubMedGoogle Scholar
  50. 50.
    Whitaker, M.J. and Steinhardt, R.A. (1981) The relation between the increase in reduced nicotinamide nucleotides and the initiation of DNA synthesis in sea urchin eggs. Cell 25, 95–103.PubMedGoogle Scholar
  51. 51.
    Collas, P., Chang, T., Long, C. and Robl, J.M. (1995) Inactivation of Histone H1 Kinase by Ca2+ in rabbit oocytes. Mol. Reprod. Dev. 40, 253–258.PubMedGoogle Scholar
  52. 52.
    Gould, K.L. and Nurse, P. (1989) Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342, 39–45.PubMedGoogle Scholar
  53. 53.
    Enoch, T. and Nurse, P. (1990) Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60, 665–673.PubMedGoogle Scholar
  54. 54.
    Pagano, M., Pepperkok, R., Verde, F., Ansorge, W. and Graetta, G. (1992) Cyclin A is required at two points in the human cell cycle. EMBO J. 11, 961–971.PubMedGoogle Scholar
  55. 55.
    Tosuji, H., Mabuchi, I., Fusetani, N. and Nakazawa, H. (1992) Calyculin A induces contractile ring-like apparatus formation and condensation of chromosomes in unfertilized sea urchin eggs. Proc. Natl. Acad. Sci. USA 89, 10613–10617.PubMedGoogle Scholar
  56. 56.
    Someya, A., Tanaka, N. and Okuyama, A. (1993) Inhibition of initiation of DNA replication in Xenopus egg extracts by a phosphatase inhibitor, Calyculin A. Biochem. Biophys. Res. Commun. 196, 85–91.PubMedGoogle Scholar
  57. 57.
    Iwamatsu, T., Shibata, Y., Hara, O., Yamashita, M. and Ikegami, S. (2002) Studies on fertilization in the teleost. IV. Effects of aphidicolin and camptothecin on chromosome formation in fertilized medaka eggs. Dev. Growth Differ. 44, 293–302.PubMedGoogle Scholar
  58. 58.
    Doree, M., Peaucellier, G. and Picard, A. (1983) Activity of the maturation-promoting factor and the extent of protein phosphorylation oscillate simultaneously during meiotic maturation of starfish oocytes. Dev. Biol. 99, 489–501.PubMedGoogle Scholar
  59. 59.
    Gerhart, J.C., Wu, M. and Kirschner, M.W. (1984) Cell cycle dynamics of an M phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J. Cell Biol. 98, 1247–1255.PubMedGoogle Scholar
  60. 60.
    Newport, J.W. and Kirschner, M.W. (1984) Regulation of the cell cycle during early Xenopus development. Cell 37, 731–742.PubMedGoogle Scholar
  61. 61.
    Picard, A., Labbe, J.C., Peaucellier, G., et al. (1987) Changes in the activity of the maturation-promoting factor are correlated with those of a major cAMP- and calcium independent protein kinase during the first mitotic cell cycles in the starfish embryo. Dev. Growth Differ. 29, 93–103.Google Scholar
  62. 62.
    Iwamatsu, T., Kobayashi, H., Yamashita, M., Shibata, Y. and Yusa, A. (2003) Experimental hybridization among Oryzias species. II. Karyogamy and abnormality of chromosome separation in the cleavage of interspecific hybrids between Oryzias latipes and O. javanicus. Zool. Sci. 20, 1381–1387.PubMedGoogle Scholar
  63. 63.
    Sakai, C., Konno, F., Nakano, O., Iwai, T., Yokota, T., Lee, J., Nishida-Umehara, C., Kuroiwa, A., Mtsuda, Y. and Yamashita, M. (2007) Chromosome elimination in the interspecific hybrid medeka between Oryzias latipes and O. hubbsi. Chromosome Res. 15, 697–709.PubMedGoogle Scholar
  64. 64.
    Loupart, M.-L., Krause, S.A. and Heck, M.M.S. (2000) Aberrant replication timing induces chromosome condensation in Drosophila ORC2 mutants. Curr. Biol. 10, 1547–1556.PubMedGoogle Scholar
  65. 65.
    Nagano, H., Okano, K., Ikegami, S. and Katagiri, C. (1982) Changes in intracellular location of DNA polymerase-alpha during oocyte maturation of the toad, Bufo bufo japonicus. Biochem. Biophys. Res. Commun. 106, 683–690.PubMedGoogle Scholar
  66. 66.
    Fox, A.M., Breaux, C.B. and Benbow, R.M. (1980) Intracellular localization of DNA polymerase activities within large oocytes of the frog, Xenopus laevis. Dev. Biol. 80, 79–95.PubMedGoogle Scholar
  67. 67.
    Grippo, P.C. Taddei, C., Locorotondo, G. and Gambino-Giuffrida, A. (1977) Cellular localization of DNA polymerase activities in full-grown oocytes and embryos of Xenopus laevis. Exp. Cell Res. 190, 247–252.Google Scholar
  68. 68.
    Martini, G., Tato, F., Attardi, D.G. and Tocchini-Valentini, G.P. (1976) Nuclear localization of DNA polymerase alpha in Xenopus laevis. Biochem. Biophys. Res. Commun. 72, 875–879.PubMedGoogle Scholar
  69. 69.
    Shioda, M., Nagano, H. and Mano, Y. (1977) Cytoplasmic location of DNA polymerase-α and -βof sea urchin eggs. Biochem. Biophys. Res. Commun. 78, 1362–1368.PubMedGoogle Scholar
  70. 70.
    Haraguchi, T. and Nagano, H. (1983) Isolation and characterization of DNA polymerases from mature oocytes of the starfish, Asterina pectinifera. J. Biochem. 93, 87–697.Google Scholar
  71. 71.
    Oishi, N. and Shimada, H. (1983) Intracellular localization of DNA polymerases in the oocyte of starfish, Asterina pectinifera. Dev. Growth Differ. 25, 547–551.Google Scholar
  72. 72.
    Iwamatsu, T., Haraguchi, T. and Nagano, H. (2010) Cytoplasmic location of DNA polymerase in oocytes of the teleost fish, Oryzias latipes. Aichi Univ. Educat. (Nai. Sci.) 59, 1–8.Google Scholar
  73. 73.
    Ikegami, S., Taguchi, T., Ohashi, M., Oguro, M., Nagano, H. and Mano, Y. (1978) Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275, 458–460.PubMedGoogle Scholar
  74. 74.
    Ikegami, S., Amemiya, S., Oguro, M., Nagano, H. and Mano, Y. (1979) Inhibition by aphidicolin of cell cycle progression and DNA replication in sea urchin embryos. J. Cell. Physiol. 100, 439–444.PubMedGoogle Scholar
  75. 75.
    Oguro, M., Suzuki-Hori, C., Nagano, H., Mano, Y. and Ikegami, S. (1979) The mode of inhibitory action by aphidicolin on eukaryotic DNA polymerase-α. Eur. J. Biochem. 97, 603–607.PubMedGoogle Scholar
  76. 76.
    Brachet, J. and De Ptrocellis, B. (1981) The effects of aphidicolin, an inhibitor of DNA replication, on sea urchin development. Exp. Cell Res. 135, 179–189.PubMedGoogle Scholar
  77. 77.
    Yamada, H., Hirai, S., Ikegami, S., Kawarada, Y., Okuhara, E. and Nagano, H. (1985) The fate of DNA originally existing in the zygote nucleus during a chromosomal cleavage of fertilized echinoderm eggs in the presence of aphidicolin: Microscopic studies with anti-DNA antibody. J. Cell Physiol. 124, 9–12.PubMedGoogle Scholar
  78. 78.
    Nagano, H., Hirai, S., Okano, K. and Ikegami, S. (1981) Achromosomal cleavage of fertilized starfish eggs in the presence of aphidicolin. Dev. Biol. 85, 409–415.PubMedGoogle Scholar
  79. 79.
    Saiki, T., Kyozuka, K., Osanai, K. and Hamaguchi, Y. (1991) Chromosomal behavior in starfish (Asterina pectinifera) zygotes under the effect of aphidicolin, an inhibitor of DNA polymerase. Exp. Cell Res. 192, 380–388.PubMedGoogle Scholar
  80. 80.
    Wells, N.J. and Hickson, I.D. (1995) Human topoisomerase II alpha is phosphorylated in a cell-cycle phase-dependent manner by a proline-directed kinase. Eur. J. Biochem. 23, 491–497.Google Scholar
  81. 81.
    Clute, P. and Masui, Y. (1997) Microtubule dependence of chromosome cycles in Xenopus laevis blastomeres under the influence of a DNA synthesis inhibitor, aphidicolin. Dev. Biol. 185, 1–13.PubMedGoogle Scholar
  82. 82.
    Taguchi, T., Ohashi, M., Oguro, M., Nagano, H. and Mano, Y. (1978) Aphidicolin prevents mitotic cell division by interfering with the activity of DNA polymerase-α. Nature 275, 458–460.PubMedGoogle Scholar
  83. 83.
    Droge, P., Sogo, J.M. and Stahl, H. (1985) Inhibition of DNA synthesis by aphidicolin induces supercoiling in simian virus 40 replicative intermediates. EMBO J. 4, 3241–3246.PubMedGoogle Scholar
  84. 84.
    Wang, J.C. (1985) DNA topoisomerases. Annu. Rev. Biochem. 54, 665–697.PubMedGoogle Scholar
  85. 85.
    Drlica, K. and Franco, R.J. (1988) Inhibitors of DNA topoisomerases. Biochemistry 27, 2253–2259.PubMedGoogle Scholar
  86. 86.
    Gupta, M., Fujimori, A. and Pommier, Y. (1995) Eukaryotic DNA topoisomerases I. Biochim. Biophys. Acta 1262, 1–14.PubMedGoogle Scholar
  87. 87.
    Ohta, E., Ohta, S., Hongo, T., Hamaguchi, Y., Ando, T., Shioda, M. and Ikegami, S. (2003) Inhibition of chromosome separation in fertilized starfish eggs by kalihinol F, a topoisomerase I inhibitor obtained from a marine sponge. Biosci. Biotechnol. Biochem. 67, 2365–2372.PubMedGoogle Scholar
  88. 88.
    Horowitz, M.S. and Horowitz, S.B. (1971) Intracellular degradation of HeLa and adenovirus type 2 DNA induced by camptothecin. Biochem. Biophys. Res. Commun. 45, 723–727.Google Scholar
  89. 89.
    Annunziato, T.A. (1989) Inhibitors of topoisomerases I and II arrest DNA replication, but do not prevent nucleosome assembly in vivo. J. Cell Sci. 93, 593–603.PubMedGoogle Scholar
  90. 90.
    Gellert, M. (1981) DNA topoisomerases. Annu. Rev. Biochem. 50, 879–910.PubMedGoogle Scholar
  91. 91.
    Hsian, Y.-H., Hertzberg, R., Hecht, S. and Liu, L.F. (1985) Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J. Biol. Chem. 260, 14873–14878.Google Scholar
  92. 92.
    Zhu, Q., Pongpech, P. and DiGate, R.J. (2001) Type I topoisomerase activity is required for proper chromosomal segregation in Escherichia coli. Proc. Natl. Acad. Sci. USA 98, 9766–9771.PubMedGoogle Scholar
  93. 93.
    Usongo, V., Nolent, F., Sanscartier, P., Tanguay, C., Broccoli, S., Baaklini, I., Drlica, K. and Drolet, M. (2008) Depletion of RNase H1 activity in Escherichia coli lacking DNA topoisomerase I leads to defects in DNA supercoiling and segregation. Mol. Microbiol. 69, 968–981.PubMedGoogle Scholar
  94. 94.
    Uemura, T., Ohkura, H., Adachi, Y., Morino, K., Shiozaki, K. and Yanagida, M. (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50, 917–925.PubMedGoogle Scholar
  95. 95.
    Holm, C., Goto, T., Wang, J.C. and Botstein, D. (1985) DNA topoisomerase II is required at the time of mitosis in yeast. Cell 41, 553–563.PubMedGoogle Scholar
  96. 96.
    Holm, C., Stearns, T. and Botstein, D. (1989) DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage. Mol. Cell. Biol. 9, 159–168.PubMedGoogle Scholar
  97. 97.
    Rose, D., Thomas, W. and Holm, C. (1990) Segregation of recombined chromosomes in meiosis I requires DNA topoisomerase II. Cell 60, 1009–1017PubMedGoogle Scholar
  98. 98.
    Bhat, M.A., Philp, A.V., Glover, D.M. and Bellen, H.J. (1996) Chromatid segregation at anaphase required the barren product, a novel chromosome-associated protein that interacts with topoisomerase II. Cell 87, 1103–1114.PubMedGoogle Scholar
  99. 99.
    Wright, S.J. and Schatten, G. (1990) Teniposide, a topoisomerase II inhibitor, prevents chromosome condensation and separation but not decondensation in fertilized surf clam (Spisula solidissima) oocytes. Dev. Biol. 142, 224–232.PubMedGoogle Scholar
  100. 100.
    Shamu, C.E. and Murray, A.W. (1992) Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase. J. Cell Biol. 117, 921–934.PubMedGoogle Scholar
  101. 101.
    Buchenau, P., Saumweber, H. and Arndt-Jovin, D.L. (1993) Consequences of TOPO II inhibition in early embryogenesis of Drosophila revealed by in vivo confocal laser scanning microscopy. J. Cell Sci. 104, 1175–1185.PubMedGoogle Scholar
  102. 102.
    Kallio, M. and Lahdtie, J. (1996) Fragmentation of centromeric DNA and prevention of homologous chromosome separation in male meiosis in vivo by the topoisomerase II inhibitor etoposide. Mutagenesis 11, 435–443.PubMedGoogle Scholar
  103. 103.
    Kallio, M. and Lahdtie, J. (1997) Effects of the DNA topoisomerase II inhibitor merbarone in male mouse meiotic divisions in vivo: cell cycle arrest and induction of aneuploidy. Environ. Mol. Mutagen. 29, 16–27.PubMedGoogle Scholar
  104. 104.
    Mailhes, J.B., Marchetti, F., Young, D. and London, S.N. (1996) Numerical and structural chromosome aberrations induced by etoposide (VP-16) during oocyte maturation of mice: transmission to 1-cell zygotes and damage to dictyate oocytes. Mutagenesis 11, 357–361.PubMedGoogle Scholar
  105. 105.
    Marchetti, F., Bishop, J.B., Lowe, X., Generoso, W.M., Hozier, J. and Wyrobek, A.J. (2001) Etoposide induces heritable chromosomal aberrations and aneuploidy during male meiosis in the mouse. Proc. Natl. Acad. Sci. USA 98, 3952–3957.PubMedGoogle Scholar
  106. 106.
    Tateno, H. and Kamiguchi, Y. (2001) Abnormal chromosome migration and chromosome aberrations in mouse oocytes during meiosis II in the presence of topoisomerase II inhibitor ICRF-193. Mutat. Res. 502, 1–9.Google Scholar
  107. 107.
    Charron, M. and Hancock, R. (1990) DNA topoisomerase II is required for formation of mitotic chromosomes in Chinese hamster ovary cells: studies using the inhibitor 4'-demethylepipodophyllotoxin 9-(4,6-0-thenylidene-β-D-glucopyranoside). Biochemistry 29, 9531–9537.PubMedGoogle Scholar
  108. 108.
    Downes, C.S., Mullinger, A.M. and Johnson, R.T. (1991) Inhibitors of DNA topoisomerase II prevent chromatid separation in mammalian cells but do not prevent exit from mitosis. Proc. Natl. Acad. Sci. USA 88, 8895–8899.PubMedGoogle Scholar
  109. 109.
    Baldi, M.I., Benedetti, P., Mattoccia, E. and Tocchi-Valentini, G.P. (1980) in vitro catenation and decatenation of DNA and a novel eukaryotic ATP-dependent topoisomerase. Cell 20, 461–467.PubMedGoogle Scholar
  110. 110.
    Hsieh, T. (1983) Knotting of the circular duplex DNA by type II DNA topoisomerase from Drosophila melanogaster. J. Biol. Chem. 258, 8413–8420.PubMedGoogle Scholar
  111. 111.
    Hsieh, T.-S. and Brutlag, D. (1980) ATP-dependent DNA topoisomerase from D. melanogaster reversibly catenates duplex DNA rings. Cell 27, 115–125.Google Scholar
  112. 112.
    Kreuzer, K.N. and Cozzarelli, N.R. (1980) Formation and resolution of DNA catenanes by DNA gyrase. Cell 20, 245–254.PubMedGoogle Scholar
  113. 113.
    Liu, L.F., Davis, J.I. and Calendar, R. (1981) Novel topologically knotted DNA from bacteriophage P4 capsids: studies with DNA topoisomerases. Nucleic Acids Res. 9, 3979–3989.PubMedGoogle Scholar
  114. 114.
    Sundin, O. and Varshavsky, A. (1980) Terminal stages of SV40 replication proceed via multiply intercatenated dimmers. Cell 21, 103–114.PubMedGoogle Scholar
  115. 115.
    Sundin, O. and Varshavsky, A. (1981) Arrest of segregation leads to accumulation of highly intertwined catenated dimmers: dissection of the final stage of SV40 DNA replication. Cell 25, 659–669.PubMedGoogle Scholar
  116. 116.
    DiNardo, S., Voelkel, K. and Sternglanz, R. (1984) DNA topoisomerase II mutant of Saccharomyces cerevisiae: Topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA 81, 2616–2620.PubMedGoogle Scholar
  117. 117.
    Weaver, D.T., Fields-Berry, S.C. and DePamphilis, M.L. (1985) The termination region for SV40 DNA replication directs the mode of separation for the two sibling molecules. Cell 41, 565–575.PubMedGoogle Scholar
  118. 118.
    Maeshima, K. and Laemmli, U.K. (2003) A two-step scaffolding for mitotic chromosome assembly. Dev. Cell 4, 467–480.PubMedGoogle Scholar
  119. 119.
    Xu, Y.-X. and Manley, J.L. (2007) New insights into mitotic chromosome condensation. A role for the prolyl isomerase Pin 1. Cell Cycle 6, 2896–2901.PubMedGoogle Scholar
  120. 120.
    Kelly, T.J. and Brown, G.W. (2000) Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829–880.PubMedGoogle Scholar
  121. 121.
    Hirano, T. (2005) SMC proteins and chromosome mechanics: from bacteria to humans. Philos. Trans. R. Soc. B 36, 507–514.Google Scholar
  122. 122.
    Yanagida, M. (2005) Basic mechanism of eukaryotic chromosome segregation. Philos. Trans. R. Soc. B 360, 609–1615.Google Scholar
  123. 123.
    Iwamatsu, T., Ohta, T., Nakayama, N. and Shoji, H. (1976) Studies of oocyte maturation of the medaka, Oryzias latipes. III. Cytoplasmic and nuclear change of oocyte during in vitro maturation. Ann. Zool. Jpn. 49, 28–37.Google Scholar
  124. 124.
    Iwamatsu, T. (1978) Studies on oocyte maturation of the medaka, Oryzias latipes. VI. Relationship between the circadian cycle of oocyte maturation and activity of the pituitary gland. J. Exp. Zool. 206, 355–363.PubMedGoogle Scholar
  125. 125.
    Iwamatsu, T., Onitake, K. and Nakashima, S. (1992) Polarity of responsiveness in sperm and artificial stimuli in medaka eggs. J. Exp. Zool. 264, 351–358.Google Scholar
  126. 126.
    Iwamatsu, T., Yoshimoto, Y. and Hiramoto, Y. (1988) Cytoplasmic Ca2+ release induced by microinjection of Ca2+ and effects of microinjected divalent cations on Ca2+ sequestration and exocytosis of cortical alveoli in the medaka egg. Dev. Biol. 125, 451–457.PubMedGoogle Scholar
  127. 127.
    Iwamatsu, T., Fluck, R.A. and Mori, T. (1933) Mechanical dechorionation of fertilized eggs for experimental embryology in the medaka. Zool. Sci. 10, 945–951.Google Scholar
  128. 128.
    Nomura, A., Yoneda, M. and Tanaka, S. (1993) DNA replication in fertilized eggs of the starfish Asterina pectinifera. Dev. Biol. 159, 288–297.PubMedGoogle Scholar
  129. 129.
    Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685.Google Scholar
  130. 130.
    Yamashita, M., Yoshikuni, M., Hirai, T., Fukuda, S. and Nagahama, Y. (1991) A monoclonal antibody against the PSTAIR sequence of p34cdc2, catalytic subunit of maturation-promoting factor and key regulator of the cell cycle. Dev. Growth Differ. 33, 617–624.Google Scholar
  131. 131.
    Yamashita, M., Jiang, J., Onozato, H., Nakanishi, T. and Nagahama, Y. (1992) M phase-specific histone H1 kinase in fish oocytes: purification, components and biochemical properties. Eur. J. Biochem. 205, 537–543.PubMedGoogle Scholar
  132. 132.
    Iwamatsu, T., Sugiura, T., Sugitani, K. and Hori, R. (1995) Inorganic contents of the medaka egg before and after cortical reaction. Fish Biol. J. Medaka 7, 21–24.Google Scholar
  133. 133.
    Mehlman, L.M. and Kline, D. (1994) Regulation of intracellular calcium in the mouse egg: calcium release in response to sperm or inositol triphosphate is enhanced after meiotic maturation. Biol. Reprod. 51, 1088–1198.Google Scholar
  134. 134.
    Iwamatsu, T. (1965) On fertilizability of pre-ovulation eggs of the medaka, Oryzias latipes. Embryologia 8, 327–336.Google Scholar
  135. 135.
    Iwamatsu, T. (1997) Abbreviation of the second meiotic division by precocious fertilization in fish oocytes. J. Exp. Zool. 277, 450–459.Google Scholar
  136. 136.
    Eppig, J.J., Schultz, M.R., O’Brien, M. and Chesnel, F. (1994) Relationship between the developmental programs controlling nuclear and cytoplasmic maturation of mouse oocytes. Dev. Biol. 164, 1–9.PubMedGoogle Scholar
  137. 137.
    Kuraishi, R. and Osanai, K. (1988) Behavior of sperm nuclei in meiotic eggs of the oyster, Crassostrea gigas. Bull. Mar. Biol. Stn. Asamushi 18, 57–65.Google Scholar
  138. 138.
    Longo, F.J., Mathews, L. and Hedgecock, D. (1993) Morphogenesis of maternal and paternal genomes in fertilized oyster eggs (Crassostrea gigas): effects of cytochalasin B at different periods during meiotic maturation. Biol. Bull. 185, 197–214.Google Scholar
  139. 139.
    Longo, F.J. and Anderson, E. (1970) An ultrastructural analysis of fertilization in the surf clam, Spisula solidissima. I. Polar body formation and development of the female pronucleus. J. Ultrastruct. Res. 33, 495–514.PubMedGoogle Scholar
  140. 140.
    Iwamatsu, T. (2000) Fertilization in fishes. In: Fertilization in Protozoa and Metazoan Animals – Cellular and Molecular Aspects. (J.J. Tarin and A. Cana, Eds.). pp. 89–145, Springer-Verlag.Google Scholar
  141. 141.
    Iwamatsu, T. (1997) Abbreviation of the second meiotic division by precocious fertilization in fish oocytes. J. Exp. Zool. 277, 450–459.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Aichi University of EducationKariaJapan

Personalised recommendations