Molecular Network Dynamics of Cell Cycle Control: Transitions to Start and Finish

  • Attila Csikász-NagyEmail author
  • Alida Palmisano
  • Judit Zámborszky
Part of the Methods in Molecular Biology book series (MIMB, volume 761)


The cell cycle is controlled by complex regulatory network to ensure that the phases of the cell cycle happen in the right order and transitions between phases happen only if the earlier phase is properly finished. This regulatory network receives signals from the environment, monitors the state of the DNA, and decides when the cell can proceed in its cycle. The transcriptional and post-translational regulatory interactions in this network can lead to complex dynamical responses. The cell cycle dependent oscillations in protein activities are driven by these interactions as the regulatory system moves between steady states that correspond to different phases of the cell cycle. The analysis of such complex molecular network behavior can be investigated with the tools of computational systems biology. Here we review the basic physiological and molecular transitions in the cell cycle and present how the system-level emergent properties were found by the help of mathematical/computational modeling.

Key words

Systems biology bistability oscillation computational modeling checkpoints budding yeast hysteresis 


  1. 1.
    Mazzarello, P. (1999) A unifying concept: the history of cell theory. Nat. Cell Biol. 1, E13–E15.PubMedCrossRefGoogle Scholar
  2. 2.
    Tyson, J. J., Chen, K. C., and Novak, B. (2003) Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell Biol. 15, 221–231.PubMedCrossRefGoogle Scholar
  3. 3.
    Kirschner, M. W. (2005) The meaning of systems biology. Cell 121, 503.PubMedCrossRefGoogle Scholar
  4. 4.
    Kitano, H. (2002) Systems biology: a brief overview. Science 295, 1662–1664.PubMedCrossRefGoogle Scholar
  5. 5.
    Koch, A. L., and Schaechter, M. (1962) A model for statistics of the cell division process. J. Gen. Microbiol. 29, 435–454.PubMedGoogle Scholar
  6. 6.
    Csikasz-Nagy, A. (2009) Computational systems biology of the cell cycle. Brief Bioinform. 10, 424–434.PubMedCrossRefGoogle Scholar
  7. 7.
    Nasmyth, K. (1996) At the heart of the budding yeast cell cycle. Trends Genet. 12, 405–412.PubMedCrossRefGoogle Scholar
  8. 8.
    Csikasz-Nagy, A., Battogtokh, D., Chen, K. C., Novak, B., and Tyson, J. J. (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys. J. 90, 4361–4379.PubMedCrossRefGoogle Scholar
  9. 9.
    Nurse, P. (1990) Universal control mechanism regulating onset of M phase. Nature 344, 503–508.PubMedCrossRefGoogle Scholar
  10. 10.
    Morgan, D. O. (2006) The Cell Cycle: Principles of Control. New Science Press, London.Google Scholar
  11. 11.
    Kastan, M. B., and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature 432, 316–323.PubMedCrossRefGoogle Scholar
  12. 12.
    Sveiczer, A., Novak, B., and Mitchison, J. M. (2004) Size control in growing yeast and mammalian cells. Theor. Biol. Med. Model. 1, 12.PubMedCrossRefGoogle Scholar
  13. 13.
    Bartek, J., Bartkova, J., and Lukas, J. (1996) The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8, 805–814.PubMedCrossRefGoogle Scholar
  14. 14.
    Nasmyth, K. (1996) Viewpoint: putting the cell cycle in order. Science 274, 1643–1645.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen, K. C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B., and Tyson, J. J. (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11, 369–391.PubMedGoogle Scholar
  16. 16.
    Ciliberto, A., and Shah, J. V. (2009) A quantitative systems view of the spindle assembly checkpoint. EMBO J 28, 2162–2173.PubMedCrossRefGoogle Scholar
  17. 17.
    Guertin, D. A., Trautmann, S., and McCollum, D. (2002) Cytokinesis in Eukaryotes. Microbiol. Mol. Biol. Rev. 66, 155.PubMedCrossRefGoogle Scholar
  18. 18.
    Hartwell, L. H., and Weinert, T. A. (1989) Checkpoints: controls that ensure the order of cell cycle events. Science 246, 629–634.PubMedCrossRefGoogle Scholar
  19. 19.
    Novak, B., Tyson, J. J., Gyorffy, B., and Csikasz-Nagy, A. (2007) Irreversible cell-cycle transitions are due to systems-level feedback. Nat. Cell Biol. 9, 724–728.PubMedCrossRefGoogle Scholar
  20. 20.
    Tyson, J. J., Csikasz-Nagy, A., and Novak, B. (2002) The dynamics of cell cycle regulation. Bioessays 24, 1095–1109.PubMedCrossRefGoogle Scholar
  21. 21.
    Chen, K. C., Calzone, L., Csikasz-Nagy, A., Cross, F. R., Novak, B., and Tyson, J. J. (2004) Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15, 3841–3862.PubMedCrossRefGoogle Scholar
  22. 22.
    Cross, F. R. (2003) Two redundant oscillatory mechanisms in the yeast cell cycle. Dev. Cell 4, 741–752.PubMedCrossRefGoogle Scholar
  23. 23.
    Marsh, L., Neiman, A. M., and Herskowitz, I. (1991) Signal transduction during pheromone response in yeast. Ann. Rev. Cell Biol. 7, 699–728.PubMedCrossRefGoogle Scholar
  24. 24.
    Hartwell, L. H., Mortimer, R. K., Culotti, J., and Culotti, M. (1973) Genetic control of the cell division cycle in yeast: V. genetic analysis of cdc mutants. Genetics 74, 267–286.PubMedGoogle Scholar
  25. 25.
    Hunt, T., and Sassone-Corsi, P. (2007) Riding tandem: circadian clocks and the cell cycle. Cell 129, 461.PubMedCrossRefGoogle Scholar
  26. 26.
    Nurse, P. (1975) Genetic control of cell size at cell division in yeast. Nature 256, 547–551.PubMedCrossRefGoogle Scholar
  27. 27.
    Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D., and Hunt, T. (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389–396.PubMedCrossRefGoogle Scholar
  28. 28.
    Nasmyth, K. (2001) A prize for proliferation. Cell 107, 689–701.PubMedCrossRefGoogle Scholar
  29. 29.
    Bloom, J., and Cross, F. R. (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat. Rev. Mol. Cell Biol. 8, 149–160.PubMedCrossRefGoogle Scholar
  30. 30.
    Zachariae, W., and Nasmyth, K. (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13, 2039–2058.PubMedCrossRefGoogle Scholar
  31. 31.
    Goldbeter, A. (1991) A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. USA 88, 9107–9111.PubMedCrossRefGoogle Scholar
  32. 32.
    Tyson, J. J. (1991) Modeling the cell division cycle: cdc2 and cyclin interactions. Proc. Natl. Acad. Sci. USA 88, 7328–7332.PubMedCrossRefGoogle Scholar
  33. 33.
    Tyson, J. J. (2007) Bringing cartoons to life. Nature 445, 823.PubMedCrossRefGoogle Scholar
  34. 34.
    Faure, A., and Thieffry, D. (2009) Logical modelling of cell cycle control in eukaryotes: a comparative study. Mol. Biosyst. 5, 1569–1581.PubMedCrossRefGoogle Scholar
  35. 35.
    Csikasz-Nagy, A., Gyorffy, B., Alt, W., Tyson, J. J., and Novak, B. (2008) Spatial controls for growth zone formation during the fission yeast cell cycle. Yeast 25, 59–69.PubMedCrossRefGoogle Scholar
  36. 36.
    Kar, S., Baumann, W. T., Paul, M. R., and Tyson, J. J. (2009) Exploring the roles of noise in the eukaryotic cell cycle. Proc. Natl. Acad. Sci. USA 106, 6471–6476.PubMedCrossRefGoogle Scholar
  37. 37.
    Mura, I., and Csikasz-Nagy, A. (2008) Stochastic Petri Net extension of a yeast cell cycle model. J. Theor. Biol. 254, 850–860.PubMedCrossRefGoogle Scholar
  38. 38.
    Cross, F. R., Archambault, V., Miller, M., and Klovstad, M. (2002) Testing a mathematical model for the yeast cell cycle. Mol. Biol. Cell 13, 52–70.PubMedCrossRefGoogle Scholar
  39. 39.
    Queralt, E., Lehane, C., Novak, B., and Uhlmann, F. (2006) Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125, 719–732.PubMedCrossRefGoogle Scholar
  40. 40.
    Thieffry, D. (2007) Dynamical roles of biological regulatory circuits. Brief Bioinform 8, 220–225.PubMedCrossRefGoogle Scholar
  41. 41.
    Thomas, R. (1973) Boolean formalization of genetic control circuits. J. Theor. Biol. 42, 563–585.PubMedCrossRefGoogle Scholar
  42. 42.
    Davidich, M. I., and Bornholdt, S. (2008) Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 3, e1672.PubMedCrossRefGoogle Scholar
  43. 43.
    Heath, J., Kwiatkowska, M., Norman, G., Parker, D., and Tymchyshyn, O. (2008) Probabilistic model checking of complex biological pathways. Theor. Comput. Sci. 391, 239–257.CrossRefGoogle Scholar
  44. 44.
    Monteiro, P. T., Ropers, D., Mateescu, R., Freitas, A. T., and de Jong, H. (2008) Temporal logic patterns for querying dynamic models of cellular interaction networks. Bioinformatics 24, i227–i233.PubMedCrossRefGoogle Scholar
  45. 45.
    Ballarini, P., Mazza, T., Palmisano, A., and Csikasz Nagy, A. (2009) Studying irreversible transitions in a model of cell cycle regulation. Electron Notes Theor. Comput. Sci. 232, 39–53CrossRefGoogle Scholar
  46. 46.
    Pozarowski, P., and Darzynkiewicz, Z. (2004) Analysis of cell cycle by flow cytometry, In Checkpoint Controls and Cancer, Humana Press, Totowa, NJ, pp. 301–311.Google Scholar
  47. 47.
    Di Talia, S., Skotheim, J. M., Bean, J. M., Siggia, E. D., and Cross, F. R. (2007) The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448, 947–951.PubMedCrossRefGoogle Scholar
  48. 48.
    Barik, D., Baumann, W. T., Paul, M. R., Novak, B., and Tyson, J. J. (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol. Syst. Biol. 6, 405.PubMedCrossRefGoogle Scholar
  49. 49.
    Hlavacek, W. S., Faeder, J. R., Blinov, M. L., Posner, R. G., Hucka, M., and Fontana, W. (2006) Rules for modeling signal-transduction systems. Sci STKE 2006, re6.PubMedCrossRefGoogle Scholar
  50. 50.
    Regev, A., and Shapiro, E. (2002) Cells as computation. Nature 419, 343.PubMedCrossRefGoogle Scholar
  51. 51.
    Palmisano, A. (2010) Coding biological systems in a stochastic framework: the case study of budding yeast cell cycle. In Proceedings of 1st International Conference on Bioinformatics, Valencia, Spain.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Attila Csikász-Nagy
    • 1
    Email author
  • Alida Palmisano
    • 2
  • Judit Zámborszky
    • 3
  1. 1.The Microsoft Research, University of Trento Centre for Computational and Systems BiologyPovo-TrentoItaly
  2. 2.Department of Biological SciencesVirginia Polytechnic Institute & State University BlacksburgVAUSA
  3. 3.Centre for Integrative Biology (CIBIO)University of TrentoMattarelloItaly

Personalised recommendations