Cell Cycle Synchronization for the Purpose of Somatic Cell Nuclear Transfer (SCNT)

  • Yoel ShufaroEmail author
  • Benjamin E. Reubinoff
Part of the Methods in Molecular Biology book series (MIMB, volume 761)


Somatic cell nuclear transfer (SCNT) is a technically and biologically challenging procedure during which a differentiated committed nucleus undergoes rapid reprogramming into the totipotent state in a few hours. SCNT can be utilized to generate patient- and disease-specific embryonic stem cell (ESC) lines, which carry great promise in improving our understanding of major disease conditions and hope for better therapies. In this section, we will describe how mouse SCNT is performed and survey the importance of donor cell cycle synchronization and the methods to perform it.

Key words

Somatic cell nuclear transfer reprogramming cell cycle synchronization 


  1. 1.
    Jaenisch, R., Hochedlinger, K., Blelloch, R., Yamada, Y., Baldwin, K., and Eggan, K. (2004) Nuclear cloning, epigenetic reprogramming, and cellular differentiation, Cold Spring Harb. Symp. Quant. Biol. 69, 19–27.PubMedGoogle Scholar
  2. 2.
    Markoulaki, S., Meissner, A., and Jaenisch, R. (2008) Somatic cell nuclear transfer and derivation of embryonic stem cells in the mouse, Methods 45, 101–114.PubMedCrossRefGoogle Scholar
  3. 3.
    Shufaro, Y., Lacham-Kaplan, O., Tzuberi, B. Z., McLaughlin, J., Trounson, A., Cedar, H., and Reubinoff, B. E. (2010) Reprogramming of DNA replication timing, Stem Cells 28, 443–449.PubMedGoogle Scholar
  4. 4.
    Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., and Campbell, K. H. (1997) Viable offspring derived from fetal and adult mammalian cells, Nature 385, 810–813.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilmut, I., and Paterson, L. (2003) Somatic cell nuclear transfer, Oncol. Res. 13, 303–307.PubMedGoogle Scholar
  6. 6.
    Mitalipov, S. M., Zhou, Q., Byrne, J. A., Ji, W. Z., Norgren, R. B., and Wolf, D. P. (2007) Reprogramming following somatic cell nuclear transfer in primates is dependent upon nuclear remodeling, Hum. Reprod. 22, 2232–2242.PubMedCrossRefGoogle Scholar
  7. 7.
    Cibelli, J. B., Lanza, R. P., West, M. D., and Ezzell, C. (2002) The first human cloned embryo. Sci. Am. 286, 44–51.PubMedCrossRefGoogle Scholar
  8. 8.
    Solter, D. (2000) Mammalian cloning: advances and limitations. Nat. Rev. Genet. 1, 199–207.PubMedCrossRefGoogle Scholar
  9. 9.
    Brambrink, T., Hochedlinger, K., Bell, G., and Jaenisch, R. (2006) ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc. Natl. Acad. Sci. USA 103, 933–938.PubMedCrossRefGoogle Scholar
  10. 10.
    Shufaro, Y., and Reubinoff, B. E. (2004) Therapeutic applications of embryonic stem cells. Best Pract. Res. Clin. Obstet. Gynaecol. 18, 909–927.PubMedCrossRefGoogle Scholar
  11. 11.
    Okita, K., Ichisaka, T., and Yamanaka, S. (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317.PubMedCrossRefGoogle Scholar
  12. 12.
    Campbell, K. H., Loi, P., Otaegui, P. J., and Wilmut, I. (1996) Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod. 1, 40–46.PubMedCrossRefGoogle Scholar
  13. 13.
    Collas, P., Pinto-Correia, C., Ponce de Leon, F. A., and Robl, J. M. (1992) Effect of donor cell cycle stage on chromatin and spindle morphology in nuclear transplant rabbit embryos. Biol. Reprod. 46, 501–511.PubMedCrossRefGoogle Scholar
  14. 14.
    Wakayama, T., Perry, A. C., Zuccotti, M., Johnson, K. R., and Yanagimachi, R. (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.PubMedCrossRefGoogle Scholar
  15. 15.
    Chatot, C. L., Ziomek, C. A., Bavister, B. D., Lewis, J. L., and Torres, I. (1989) An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J. Reprod. Fertil. 86, 679–688.PubMedCrossRefGoogle Scholar
  16. 16.
    Wells, D. N., Laible, G., Tucker, F. C., Miller, A. L., Oliver, J. E., Xiang, T., Forsyth, J. T., Berg, M. C., Cockrem, K., L’Huillier, P. J., Tervit, H. R., and Oback, B. (2003) Coordination between donor cell type and cell cycle stage improves nuclear cloning efficiency in cattle. Theriogenology 59, 45–59.PubMedCrossRefGoogle Scholar
  17. 17.
    Baguisi, A., Behboodi, E., Melican, D. T., Pollock, J. S., Destrempes, M. M., Cammuso, C., Williams, J. L., Nims, S. D., Porter, C. A., Midura, P., Palacios, M. J., Ayres, S. L., Denniston, R. S., Hayes, M. L., Ziomek, C. A., Meade, H. M., Godke, R. A., Gavin, W. G., Overstrom, E. W., and Echelard, Y. (1999) Production of goats by somatic cell nuclear transfer. Nat. Biotechnol. 17, 456–461.PubMedCrossRefGoogle Scholar
  18. 18.
    Kues, W. A., Anger, M., Carnwath, J. W., Paul, D., Motlik, J., and Niemann, H. (2000) Cell cycle synchronization of porcine fetal fibroblasts: effects of serum deprivation and reversible cell cycle inhibitors. Biol. Reprod. 62, 412–419.PubMedCrossRefGoogle Scholar
  19. 19.
    Dalman, A., Eftekhari-Yazdi, P., Valojerdi, M. R., Shahverdi, A., Gourabi, H., Janzamin, E., Fakheri, R., Sadeghian, F., and Hasani, F. (2010) Synchronizing cell cycle of goat fibroblasts by serum starvation causes apoptosis. Reprod. Domest. Anim., 45: e46–e53. doi: 10.1111/j.1439-0531.2009.01520xGoogle Scholar
  20. 20.
    Kurosaka, S., Nagao, Y., Minami, N., Yamada, M., and Imai, H. (2002) Dependence of DNA synthesis and in vitro development of bovine nuclear transfer embryos on the stage of the cell cycle of donor cells and recipient cytoplasts. Biol. Reprod. 67, 643–647.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Obstetrics and Gynecology and the Hadassah Human Embryonic Stem Cell Research Center, the Goldyne Savad Institute of Gene TherapyHadassah University HospitalJerusalemIsrael

Personalised recommendations