Skip to main content

Posttranslational Regulation of G Protein-Coupled Receptors

  • Protocol
  • First Online:
Methods for the Discovery and Characterization of G Protein-Coupled Receptors

Part of the book series: Neuromethods ((NM,volume 60))

  • 760 Accesses

Abstract

The G protein-coupled receptors (GPCRs) are a superfamily of transmembrane receptors that ­structurally possess an extracellular amino terminus, seven transmembrane domains linked by extracellular and intracellular loops, and a cytoplasmic carboxyl terminus. They are synthesized by ribosomes and enter into the endoplasmic reticulum (ER), from which they are transported to Golgi apparatus and the trans-Golgi network (TGN) and finally move to the plasma membrane. At the plasma membrane, GPCRs receive environmental stimuli and relay the message to the cells. During these processes, GPCRs undergo posttranslational modifications that regulate their maturation, their function at the cell surface and even the ultimate fate of the internalized receptor after agonist treatment. There are four major types of posttranslational modifications – glycosylation, phosphorylation, palmitoylation, and ubiquitination, each of which has distinct roles in expression and function of GPCRs. In this ­chapter we discuss the methods to study these posttranslational modifications and the findings of posttranslational modifications and their functional consequences on GPCRs, using opioid receptors as the main examples. Moreover, the detailed steps of the main methods are depicted and also our thoughts on future directions of this avenue of research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pierce KL, Premont RT and Lefkowitz RJ (2002) Seven-transmembrane receptors. Nat Rev Mol Cell Biol 3:639–650

    Article  PubMed  CAS  Google Scholar 

  2. Achour L, Labbe-Jullie C, Scott MG et al (2008) An escort for GPCRs: implications for regulation of receptor density at the cell surface. Trends Pharmacol Sci 29:528–535

    Article  PubMed  CAS  Google Scholar 

  3. Stiles GL, Benovic JL, Caron MG et al (1984) Mammalian beta-adrenergic receptors. Distinct glycoprotein populations containing high mannose or complex type carbohydrate chains. J Biol Chem 259:8655–8663

    PubMed  CAS  Google Scholar 

  4. George ST, Ruoho AE and Malbon CC (1986) N-glycosylation in expression and function of beta-adrenergic receptors. J Biol Chem 261:16559–16564

    PubMed  CAS  Google Scholar 

  5. Law PY, Ungar HG, Hom DS et al (1985) Effects of cycloheximide and tunicamycin on opiate receptor activities in neuroblastoma X glioma NG108-15 hybrid cells. Biochem Pharmacol 34:9–17.

    Article  PubMed  CAS  Google Scholar 

  6. McLawhon RW, Cermak D, Ellory JC et al (1983) Glycosylation-dependent regulation of opiate (enkephalin) receptors in neurotumor cells. J Neurochem 41:1286–1296.

    Article  PubMed  CAS  Google Scholar 

  7. Liu-Chen LY, Chen C and Phillips CA (1993) Beta-(3H)funaltrexamine-labeled mu-opioid receptors: species variations in molecular mass and glycosylation by complex-type, N-linked oligosaccharides. Mol Pharmacol 44:749–756

    PubMed  CAS  Google Scholar 

  8. Petaja-Repo UE, Hogue M, Laperriere A et al (2000) Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem 275:13727–13736

    Article  PubMed  CAS  Google Scholar 

  9. Li JG, Chen C and Liu-Chen LY (2007) N-Glycosylation of the human kappa opioid receptor enhances its stability but slows its trafficking along the biosynthesis pathway. Biochemistry 46: 10960–10970

    Article  PubMed  CAS  Google Scholar 

  10. Gallagher JT, Morris A and Dexter TM (1985) Identification of two binding sites for ­wheat-germ agglutinin on polylactosamine-type oligosaccharides. Biochem J 231:115–122

    PubMed  CAS  Google Scholar 

  11. Bowen WD and Kooper G (1986) Photoaffinity labeling of opiate receptors with 3H-etorphine: possible species differences in glycosylation. NIDA Res Monogr 75:17–20

    PubMed  CAS  Google Scholar 

  12. Kristiansen K (2004) Molecular mechanisms of ligand binding, signaling, and regulation within the superfamily of G-protein-coupled receptors: molecular modeling and mutagenesis approaches to receptor structure and function. Pharmacol Ther 103:21–80

    Article  PubMed  CAS  Google Scholar 

  13. Rands E, Candelore MR, Cheung AH et al (1990) Mutational analysis of beta-adrenergic receptor glycosylation. J Biol Chem 265:10759–10764

    PubMed  CAS  Google Scholar 

  14. Mialet-Perez J, Green SA, Miller WE et al (2004) A primate-dominant third glycosylation site of the beta2-adrenergic receptor routes receptors to degradation during ­agonist regulation. J Biol Chem 279:38603–38607

    Article  PubMed  CAS  Google Scholar 

  15. Ge X, Loh HH and Law PY (2009) Mu-opioid receptor cell surface expression is regulated by its direct interaction with ribophorin I. Mol Pharmacol 75:1307–1316

    Article  PubMed  CAS  Google Scholar 

  16. Bond C, LaForge KS, Tian M et al (1998) Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc Natl Acad Sci USA 95:9608–9613

    Article  PubMed  CAS  Google Scholar 

  17. Garzon J, Juarros JL, Castro MA et al (1995) Antibodies to the cloned mu-opioid receptor detect various molecular weight forms in areas of mouse brain. Mol Pharmacol 47:738–744

    PubMed  CAS  Google Scholar 

  18. Huang P, Chen C, Xu W et al (2008) Brain region-specific N-glycosylation and lipid rafts association of the rat mu opioid receptor. Biochem Biophys Res Commun 365:82–88

    Article  PubMed  CAS  Google Scholar 

  19. Nagamatsu K, Suzuki K, Teshima R et al (1989) Morphine enhances the phosphorylation of a 58 kDa protein in mouse brain membranes. Biochem J 257:165–171

    PubMed  CAS  Google Scholar 

  20. Pei G, Kieffer BL, Lefkowitz RJ et al (1995) Agonist-dependent phosphorylation of the mouse delta-opioid receptor: involvement of G protein-coupled receptor kinases but not protein kinase C. Mol Pharmacol 48:173–177

    PubMed  CAS  Google Scholar 

  21. Arden JR, Segredo V, Wang Z et al (1995) Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged mu-­opioid receptor expressed in HEK 293 cells. J Neurochem 65:1636–1645

    Article  PubMed  CAS  Google Scholar 

  22. Appleyard SM, Patterson TA, Jin W et al (1997) Agonist-induced phosphorylation of the kappa-opioid receptor. J Neurochem 69:2405–2412

    Article  PubMed  CAS  Google Scholar 

  23. Zhang J, Ferguson SS, Barak LS et al (1998) Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc Natl Acad Sci USA 95:7157–7162

    Article  PubMed  CAS  Google Scholar 

  24. El Kouhen R, Burd AL, Erickson-Herbrandson LJ et al (2001) Phosphorylation of Ser363, Thr370, and Ser375 residues within the carboxyl tail differentially regulates mu-opioid receptor internalization. J Biol Chem 276:12774–12780

    Article  PubMed  CAS  Google Scholar 

  25. Deng HB, Yu Y, Pak Y et al (2000) Role for the C-terminus in agonist-induced mu opioid receptor phosphorylation and desensitization. Biochemistry 39:5492–5499

    Article  PubMed  CAS  Google Scholar 

  26. Kouhen OM, Wang G, Solberg J et al (2000) Hierarchical phosphorylation of delta-opioid receptor regulates agonist-induced receptor desensitization and internalization. J Biol Chem 275:36659–36664

    Article  PubMed  CAS  Google Scholar 

  27. Guo J, Wu Y, Zhang W et al (2000) Identification of G protein-coupled receptor kinase 2 phosphorylation sites responsible for agonist-stimulated delta-opioid receptor phosphorylation. Mol Pharmacol 58:1050–1056

    PubMed  CAS  Google Scholar 

  28. McLaughlin JP, Xu M, Mackie K et al (2003) Phosphorylation of a carboxyl-terminal serine within the kappa-opioid receptor produces desensitization and internalization. J Biol Chem 278:34631–34640

    Article  PubMed  CAS  Google Scholar 

  29. Schulz S, Mayer D, Pfeiffer M et al (2004) Morphine induces terminal mu-opioid receptor desensitization by sustained phosphorylation of serine-375. EMBO J 23:3282–3289

    Article  PubMed  CAS  Google Scholar 

  30. Navratilova E, Waite S, Stropova D et al (2007) Quantitative evaluation of human delta opioid receptor desensitization using the operational model of drug action. Mol Pharmacol 71:1416–1426

    Article  PubMed  CAS  Google Scholar 

  31. McLaughlin JP and Chavkin C (2001) Tyrosine phosphorylation of the mu-opioid receptor regulates agonist intrinsic efficacy. Mol Pharmacol 59:1360–1368

    PubMed  CAS  Google Scholar 

  32. Appleyard SM, McLaughlin JP and Chavkin C (2000) Tyrosine phosphorylation of the kappa-opioid receptor regulates agonist efficacy. J Biol Chem 275:38281–38285

    Article  PubMed  CAS  Google Scholar 

  33. Zhang L, Zhao H, Qiu Y et al (2009) Src phosphorylation of mu-receptor is responsible for the receptor switching from an inhibitory to a stimulatory signal. J Biol Chem 284:1990–2000

    Article  PubMed  CAS  Google Scholar 

  34. Clayton CC, Bruchas MR, Lee ML et al (2010) Phosphorylation of the mu-opioid receptor at tyrosine 166 (Y3.51) in the DRY motif reduces agonist efficacy. Mol Pharmacol 77:339–347

    Article  PubMed  CAS  Google Scholar 

  35. Kramer HK, Andria ML, Esposito DH et al (2000) Tyrosine phosphorylation of the delta-opioid receptor. Evidence for its role in mitogen-activated protein kinase activation and receptor internalization. Biochem Pharmacol 60:781–792

    Article  PubMed  CAS  Google Scholar 

  36. Kramer HK, Andria ML, Kushner SA et al (2000) Mutation of tyrosine 318 (Y318F) in the delta-opioid receptor attenuates tyrosine phosphorylation, agonist-dependent receptor internalization, and mitogen-activated protein kinase activation. Brain Res Mol Brain Res 79:55–66

    Article  PubMed  CAS  Google Scholar 

  37. Papac DI, Oatis JE, Jr., Crouch RK et al (1993) Mass spectrometric identification of phosphorylation sites in bleached bovine rhodopsin. Biochemistry 32:5930–5934

    Article  PubMed  CAS  Google Scholar 

  38. Trester-Zedlitz M, Burlingame A, Kobilka B et al (2005) Mass spectrometric analysis of agonist effects on posttranslational modifications of the beta-2 adrenoceptor in mammalian cells. Biochemistry 44:6133–6143

    Article  PubMed  CAS  Google Scholar 

  39. Tobin AB, Butcher AJ and Kong KC (2008) Location, location, location…site-specific GPCR phosphorylation offers a mechanism for cell-type-specific signaling. Trends Pharmacol Sci 29:413–420

    Article  PubMed  CAS  Google Scholar 

  40. Tobin AB (2008) G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 153 Suppl 1:S167–176

    PubMed  CAS  Google Scholar 

  41. Chakrabarti S, Law PY and Loh HH (1998) Distinct differences between morphine- and [D-Ala2,N-MePhe4,Gly-ol5]-enkephalin-mu-opioid receptor complexes demonstrated by cyclic AMP-dependent protein kinase phosphorylation. J Neurochem 71:231–239

    Article  PubMed  CAS  Google Scholar 

  42. El Kouhen R, Kouhen OM, Law PY et al (1999) The absence of a direct correlation between the loss of [D-Ala2, MePhe4,Gly5-ol]Enkephalin inhibition of adenylyl cyclase activity and agonist-induced mu-opioid receptor phosphorylation. J Biol Chem 274:9207–9215

    Article  PubMed  CAS  Google Scholar 

  43. Zhang L, Yu Y, Mackin S et al (1996) Differential mu opiate receptor ­phosphorylation and ­desensitization induced by agonists and ­phorbol esters. J Biol Chem 271:11449–11454

    Article  PubMed  CAS  Google Scholar 

  44. Xiang B, Yu GH, Guo J et al (2001) Heterologous activation of protein kinase C stimulates phosphorylation of delta-opioid receptor at serine 344, resulting in beta-­arrestin- and clathrin-mediated receptor internalization. J Biol Chem 276:4709–4716

    Article  PubMed  CAS  Google Scholar 

  45. Koch T, Kroslak T, Mayer P et al (1997) Site mutation in the rat mu-opioid receptor demonstrates the involvement of calcium/­calmodulin-dependent protein kinase II in agonist-mediated desensitization. J Neurochem 69:1767–1770

    Article  PubMed  CAS  Google Scholar 

  46. Lefkowitz RJ (1998) G protein-coupled receptors. III. New roles for receptor kinases and beta-arrestins in receptor signaling and desensitization. J Biol Chem 273:18677–18680

    Article  PubMed  CAS  Google Scholar 

  47. Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53:1–24

    PubMed  CAS  Google Scholar 

  48. Hasbi A, Polastron J, Allouche S et al (1998) Desensitization of the delta-opioid receptor correlates with its phosphorylation in SK-N-BE cells: involvement of a G protein-coupled receptor kinase. J Neurochem 70:2129–2138

    Article  PubMed  CAS  Google Scholar 

  49. Bohn LM, Gainetdinov RR, Lin FT et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723

    Article  PubMed  CAS  Google Scholar 

  50. McLaughlin JP, Myers LC, Zarek PE et al (2004) Prolonged kappa opioid receptor phosphorylation mediated by G-protein receptor kinase underlies sustained analgesic tolerance. J Biol Chem 279:1810–1818

    Article  PubMed  CAS  Google Scholar 

  51. Qiu Y, Loh HH and Law PY (2007) Phosphorylation of the delta-opioid receptor regulates its beta-arrestins selectivity and subsequent receptor internalization and adenylyl cyclase desensitization. J Biol Chem 282:22315–22323

    Article  PubMed  CAS  Google Scholar 

  52. Wang F, Chen X, Zhang X et al (2008) Phosphorylation state of mu-opioid receptor determines the alternative recycling of receptor via Rab4 or Rab11 pathway. Mol Endocrinol 22:1881–1892

    Article  PubMed  CAS  Google Scholar 

  53. Zhang X, Wang F, Chen X et al (2005) Beta-arrestin1 and beta-arrestin2 are differentially required for phosphorylation-dependent and -independent internalization of delta-opioid receptors. J Neurochem 95:169–178

    Article  PubMed  CAS  Google Scholar 

  54. Wolf R, Koch T, Schulz S et al (1999) Replacement of threonine 394 by alanine facilitates internalization and resensitization of the rat mu opioid receptor. Mol Pharmacol 55:263–268

    PubMed  CAS  Google Scholar 

  55. Qiu Y, Law PY and Loh HH (2003) Mu-opioid receptor desensitization: role of receptor phosphorylation, internalization, and representation. J Biol Chem 278:36733–36739

    Article  PubMed  CAS  Google Scholar 

  56. Zhang X, Wang F, Chen X et al (2008) Post-endocytic fates of delta-opioid receptor are regulated by GRK2-mediated receptor phosphorylation and distinct beta-arrestin isoforms. J Neurochem 106:781–792

    Article  PubMed  CAS  Google Scholar 

  57. Wang H, Guang W, Barbier E et al (2007) Mu opioid receptor mutant, T394A, abolishes opioid-mediated adenylyl cyclase superactivation. Neuroreport 18:1969–1973

    Article  PubMed  CAS  Google Scholar 

  58. Escriba PV, Wedegaertner PB, Goni FM et al (2007) Lipid-protein interactions in GPCR-associated signaling. Biochim Biophys Acta 1768:836–852

    Article  PubMed  CAS  Google Scholar 

  59. Drisdel RC, Alexander JK, Sayeed A et al (2006) Assays of protein palmitoylation. Methods 40:127–134

    Article  PubMed  CAS  Google Scholar 

  60. O’Brien PJ and Zatz M (1984) Acylation of bovine rhodopsin by [3H]palmitic acid. J Biol Chem 259:5054–5057

    PubMed  Google Scholar 

  61. Ovchinnikov Yu A, Abdulaev NG and Bogachuk AS (1988) Two adjacent cysteine residues in the C-terminal cytoplasmic fragment of bovine rhodopsin are palmitylated. FEBS Lett 230:1–5

    Article  PubMed  Google Scholar 

  62. O’Dowd BF, Hnatowich M, Caron MG et al (1989) Palmitoylation of the human beta 2-adrenergic receptor. Mutation of Cys341 in the carboxyl tail leads to an uncoupled nonpalmitoylated form of the receptor. J Biol Chem 264:7564–7569

    PubMed  Google Scholar 

  63. Chen C, Shahabi V, Xu W et al (1998) Palmitoylation of the rat mu opioid receptor. FEBS Lett 441:148–152

    Article  PubMed  CAS  Google Scholar 

  64. Petaja-Repo UE, Hogue M, Leskela TT et al (2006) Distinct subcellular localization for constitutive and agonist-modulated palmitoylation of the human delta opioid receptor. J Biol Chem 281:15780–15789

    Article  PubMed  Google Scholar 

  65. Probst WC, Snyder LA, Schuster DI et al (1992) Sequence alignment of the G-protein coupled receptor superfamily. DNA Cell Biol 11:1–20

    Article  PubMed  CAS  Google Scholar 

  66. Qanbar R and Bouvier M (2003) Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol Ther 97:1–33

    Article  PubMed  CAS  Google Scholar 

  67. Mouillac B, Caron M, Bonin H et al (1992) Agonist-modulated palmitoylation of beta 2-adrenergic receptor in Sf9 cells. J Biol Chem 267:21733–21737

    PubMed  CAS  Google Scholar 

  68. Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318: 1258–1265

    Article  PubMed  CAS  Google Scholar 

  69. Shenoy SK (2007) Seven-transmembrane receptors and ubiquitination. Circ Res 100:1142–1154

    Article  PubMed  CAS  Google Scholar 

  70. Bonifacino JS and Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  PubMed  CAS  Google Scholar 

  71. Shenoy SK, McDonald PH, Kohout TA et al (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. Science 294:1307–1313

    Article  PubMed  CAS  Google Scholar 

  72. Shenoy SK and Lefkowitz RJ (2003) Trafficking patterns of beta-arrestin and G protein-coupled receptors determined by the kinetics of beta-arrestin deubiquitination. J Biol Chem 278:14498–14506

    Article  PubMed  CAS  Google Scholar 

  73. Chaturvedi K, Bandari P, Chinen N et al (2001) Proteasome involvement in agonist-induced down-regulation of mu and delta ­opioid receptors. J Biol Chem 276:12345–12355

    Article  PubMed  CAS  Google Scholar 

  74. Petaja-Repo UE, Hogue M, Laperriere A et al (2001) Newly synthesized human delta opioid receptors retained in the endoplasmic reticulum are retrotranslocated to the ­cytosol, ­deglycosylated, ubiquitinated, and degraded by the proteasome. J Biol Chem 276:4416–4423

    Article  PubMed  CAS  Google Scholar 

  75. Li JG, Haines DS and Liu-Chen LY (2008) Agonist-promoted Lys63-linked polyubiquitination of the human kappa-opioid receptor is involved in receptor down-regulation. Mol Pharmacol 73:1319–1330

    Article  PubMed  CAS  Google Scholar 

  76. Miggin SM, Lawler OA and Kinsella BT (2002) Investigation of a functional requirement for isoprenylation by the human ­prostacyclin receptor. Eur J Biochem 269:1714–1725

    Article  PubMed  CAS  Google Scholar 

  77. Miggin SM, Lawler OA and Kinsella BT (2003) Palmitoylation of the human prostacyclin receptor. Functional implications of palmitoylation and isoprenylation. J Biol Chem 278:6947–6958

    Article  PubMed  CAS  Google Scholar 

  78. Muller S, Hoege C, Pyrowolakis G et al (2001) SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol 2:202–210

    Article  PubMed  CAS  Google Scholar 

  79. Scheschonka A, Tang Z and Betz H (2007) Sumoylation in neurons: nuclear and synaptic roles? Trends Neurosci 30:85–91

    Article  PubMed  CAS  Google Scholar 

  80. Hay RT (2005) SUMO: a history of modification. Mol Cell 18:1–12

    Article  PubMed  CAS  Google Scholar 

  81. Tang Z, El Far O, Betz H et al (2005) Pias1 interaction and sumoylation of metabotropic glutamate receptor 8. J Biol Chem 280:38153–38159

    Article  PubMed  CAS  Google Scholar 

  82. Perroy J, Pontier S, Charest PG et al (2004) Real-time monitoring of ubiquitination in living cells by BRET. Nat Methods 1:203–208

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Qiu, Y., Law, PY. (2011). Posttranslational Regulation of G Protein-Coupled Receptors. In: Stevens, C. (eds) Methods for the Discovery and Characterization of G Protein-Coupled Receptors. Neuromethods, vol 60. Humana Press. https://doi.org/10.1007/978-1-61779-179-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-179-6_7

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-178-9

  • Online ISBN: 978-1-61779-179-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics