Skip to main content

Detecting the Role of Arrestins in G Protein-Coupled Receptor Regulation

  • Protocol
  • First Online:

Part of the book series: Neuromethods ((NM,volume 60))

Abstract

G protein-coupled receptors (GPCRs) are the major sites of actions for the body’s endogenous hormones and neurotransmitters which make them ideal targets for pharmaceutical development with the goal of either mimicking the normal transmitter response or tempering it. In recent years, targeting GPCRs has become more complicated as we realize that drug action at receptors is “context dependent” such that activation and inhibition is limited to the response evaluated and agonist and antagonist become terms that reflect a particular condition of the experimental or physiological output. Therefore, the composition of the receptor’s immediate environment may determine activation profiles as posttranslational modifications of the receptor or of the binding partners can ultimately lead to regulation of the responsiveness of the receptor.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lefkowitz RJ and Whalen EJ (2004) Beta-arrestins: traffic cops of cell signaling. Curr Opin Cell Biol 16:162–168.

    Article  PubMed  CAS  Google Scholar 

  2. Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-transmembrane receptors. Trends Pharmacol Sci 25:413–422.

    Article  PubMed  CAS  Google Scholar 

  3. Gurevich EV, Benovic JL and Gurevich VV (2004) Arrestin2 expression selectively increases during neural differentiation. J Neurochem 91:1404–1416.

    Article  PubMed  CAS  Google Scholar 

  4. Ahmed MR, Gurevich VV, Dalby KN et al (2008) Haloperidol and clozapine differentially affect the expression of arrestins, receptor kinases, and extracellular signal-regulated kinase activation. J Pharmacol Exp Ther 325:276–283.

    Article  PubMed  CAS  Google Scholar 

  5. Violin JD, Ren XR and Lefkowitz RJ (2006) G-protein-coupled receptor kinase specificity for beta-arrestin recruitment to the beta2-adrenergic receptor revealed by fluorescence resonance energy transfer. J Biol Chem 281:20577–20588.

    Article  PubMed  CAS  Google Scholar 

  6. Drake MT, Violin JD, Whalen EJ et al (2008) Beta-arrestin-biased agonism at the beta2-adrenergic receptor. J Biol Chem 283:5669–5676.

    Article  PubMed  CAS  Google Scholar 

  7. Galandrin S and Bouvier M (2006) Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 70:1575–1584.

    Article  PubMed  CAS  Google Scholar 

  8. Zidar DA, Violin JD, Whalen EJ et al (2009) Selective engagement of G protein coupled receptor kinases (GRKs) encodes distinct functions of biased ligands. Proc Natl Acad Sci USA 106:9649–9654.

    Article  PubMed  CAS  Google Scholar 

  9. Kohout TA, Lin, FS, Perry SJ et al (2001) Beta-arrestin 1 and 2 differentially regulate heptahelical receptor signaling and trafficking. Proc Natl Acad Sci USA 98:1601–1606.

    Article  PubMed  CAS  Google Scholar 

  10. Kohout TA and Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63:9–18.

    Article  PubMed  CAS  Google Scholar 

  11. Vines CM, Revankar CM, Maestas, DC et al (2003) N-formyl peptide receptors internalize but do not recycle in the absence of arrestins. J Biol Chem 278:41581–41584.

    Article  PubMed  CAS  Google Scholar 

  12. DeFea KA, Zalevsky J, Thoma, MS et al (2000) Beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281.

    Article  PubMed  CAS  Google Scholar 

  13. McDonald PH, Chow, CW, Miller WE et al (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577.

    Article  PubMed  CAS  Google Scholar 

  14. Luttrell LM, Ferguson SS, Daaka Y et al (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661.

    Article  PubMed  CAS  Google Scholar 

  15. Freedman NJ and Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Recent Prog Horm Res 51:319–351.

    PubMed  CAS  Google Scholar 

  16. Tohgo A, Choy EW, Getsy-Palmer D et al (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278:6258–6267.

    Article  PubMed  CAS  Google Scholar 

  17. Barak LS, Warabi K, Feng X et al (1999) Real-time visualization of the cellular redistribution of G protein-coupled receptor kinase 2 and beta-arrestin 2 during homologous desensitization of the substance P receptor. J Biol Chem 274:7565–7569.

    Article  PubMed  CAS  Google Scholar 

  18. Barak LS, Zhang J, Ferguson SS et al (1999) Signaling, desensitization, and trafficking of G protein-coupled receptors revealed by green fluorescent protein conjugates. Methods Enzymol 302:153–171.

    Article  PubMed  CAS  Google Scholar 

  19. Oakley RH, Laporte SA, Holt JA et al (2000) Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 275:17201–17210.

    Article  PubMed  CAS  Google Scholar 

  20. Johnson EC, Bohn LM, Barak LS et al (2003) Identification of Drosophila neuropeptide receptors by G protein-coupled receptors-beta-arrestin2 interactions. J Biol Chem 278(52): 52172–52178.

    Article  PubMed  CAS  Google Scholar 

  21. Johnson EC (2003) Identification and characterization of a G protein-coupled receptor for the neuropeptide proctolin in Drosophila melanogaster. Proc Natl Acad Sci USA 100:6198–6203.

    Article  PubMed  CAS  Google Scholar 

  22. Oakley RH, Laporte SA, Holt JA et al (1999) Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274:32248–32257.

    Article  PubMed  CAS  Google Scholar 

  23. Wilbanks AM, Laporte SA, Bohn LM et al (2002) Apparent loss-of-function mutant GPCRs revealed as constitutively desensitized receptors. Biochemistry 41:11981–11989.

    Article  PubMed  CAS  Google Scholar 

  24. Claing A, Laporte SA, Caron MG et al (2002) Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 66:61–79.

    Article  PubMed  CAS  Google Scholar 

  25. Oakley RH, Hudson CC, Cruickshank RD et al (2002) The cellular distribution of fluorescently labeled arrestins provides a robust, sensitive, and universal assay for screening G protein-coupled receptors. Assay Drug Dev Technol 1: 21–30.

    Article  PubMed  CAS  Google Scholar 

  26. Hudson CC, Oakley RH, Sjaastad MD et al (2006) High-content screening of known G protein-coupled receptors by arrestin translocation. Methods Enzymol 414:63–78.

    Article  PubMed  CAS  Google Scholar 

  27. Ghosh RN, DeBiasio R, Hudson CC et al (2005) Quantitative cell-based high-content screening for vasopressin receptor agonists using transfluor technology. J Biomol Screen 10:476–484.

    Article  PubMed  CAS  Google Scholar 

  28. Oakley RH, Hudson CC, Sjaastad MD et al (2006) The ligand-independent translocation assay: an enabling technology for screening orphan G protein-coupled receptors by arrestin recruitment. Methods Enzymol 414:50–63.

    Article  PubMed  CAS  Google Scholar 

  29. Bertrand L, Parent S, Caron MG et al (2002)The BRET2/arrestin assay in stable recombinant cells: a platform to screen for compounds that interact with G protein-coupled receptors (GPCRS). J Recept Signal Transduct Res 22:533–541.

    Article  PubMed  CAS  Google Scholar 

  30. Hamdan FF, Percherancier Y, Breton B et al (2006) Monitoring protein-protein interactions in living cells by bioluminescence resonance energy transfer (BRET). Curr Protoc Neurosci 5:5–23.

    PubMed  Google Scholar 

  31. Vrecl M, Jorgensen R, Pogacnik A et al (2004) Development of a BRET2 screening assay using beta-arrestin 2 mutants. J Biomol Screen 9: 322–333.

    Article  PubMed  CAS  Google Scholar 

  32. Hamdan FF, Audet M, Garneau P et al (2005) High-throughput screening of G protein-coupled receptor antagonists using a bioluminescence resonance energy transfer 1-based beta-arrestin2 recruitment assay. J Biomol Screen 10:463–475.

    Article  PubMed  CAS  Google Scholar 

  33. Heding A (2004) Use of the BRET 7TM receptor/beta-arrestin assay in drug discovery and screening. Expert Rev Mol Diagn 4:403–411.

    Article  PubMed  CAS  Google Scholar 

  34. van Der Lee MM, Bras M, van Koppen CJ et al (2008) Beta-Arrestin recruitment assay for the identification of agonists of the sphingosine 1-phosphate receptor EDG1. J Biomol Screen 13:986–998.

    Article  Google Scholar 

  35. Zhao X, Jones A, Olson KR et al (2008) A homogeneous enzyme fragment complementation-based beta-arrestin translocation assay for high-throughput screening of G-protein-coupled receptors. J Biomol Screen13:737–747.

    Article  PubMed  CAS  Google Scholar 

  36. McGuinness D, Maliksay A, Visconti R et al (2009) Characterizing cannabinoid CB2 receptor ligands using DiscoveRx PathHunter beta-arrestin assay. J Biomol Screen 14:49–58.

    Article  PubMed  CAS  Google Scholar 

  37. Wetter JA, Revankar C, Hanson BJ (2009) Utilization of the Tango beta-arrestin recruitment technology for cell-based EDG receptor assay development and interrogation. J Biomol Screen 14:1134–1141.

    Article  PubMed  CAS  Google Scholar 

  38. Doucette C, Vedik K, Koepnick E et al (2009) Kappa opioid receptor screen with the Tango beta-arrestin recruitment technology and characterization of hits with second-messenger assays. J Biomol Screen 14:381–394.

    Article  PubMed  CAS  Google Scholar 

  39. Yan YX, Boldt-Houle DM, Tillotson BP et al (2002) Cell-based high-throughput screening assay system for monitoring G protein-coupled receptor activation using beta-galactosidase enzyme complementation technology. J Biomol Screen 7:451–459.

    Article  PubMed  CAS  Google Scholar 

  40. van der Lee MM, Blomenrohr M, van der Doelen AA et al (2009) Pharmacological characterization of receptor redistribution and beta-arrestin recruitment assays for the cannabinoid receptor 1. J Biomol Screen 14:811–823.

    Article  PubMed  Google Scholar 

  41. Hanson BJ, Wetter J, Bercher MR et al (2009) A homogeneous fluorescent live-cell assay for measuring 7-transmembrane receptor activity and agonist functional selectivity through beta-arrestin recruitment. J Biomol Screen 14:798–810.

    Article  PubMed  CAS  Google Scholar 

  42. Laporte SA, Oakley RH, Holt JA et al (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta 2-adrenergic receptor into clathrin-coated pits. J Biol Chem 275:23120–23126.

    Article  PubMed  CAS  Google Scholar 

  43. Schmid CL, Raehal KM, Bohn LM (2008) Agonist-directed signaling of the serotonin 2A receptor depends on beta-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA 105:1079–1084.

    Article  PubMed  CAS  Google Scholar 

  44. Kinzer-Ursem TL, Linderman JJ (2007) Both ligand- and cell-specific parameters control ligand agonism in a kinetic model of G protein-coupled receptor signaling. PLoS Comput Biol 3:e6.

    Article  PubMed  Google Scholar 

  45. Kennedy MJ, Ehlers MD (2006) Organelles and trafficking machinery for postsynaptic plasticity. Ann Rev Neurosci 29:325–362.

    Article  PubMed  CAS  Google Scholar 

  46. Zhang J, Vinuela A, Neely MH et al (2007) Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem 282:15778–15789.

    Article  PubMed  CAS  Google Scholar 

  47. Xia Z, Gray JA, Compton-Toth BA et al (2003) A direct interaction of PSD-95 with 5-HT2A serotonin receptors regulates receptor trafficking and signal transduction. J Biol Chem 278:21901–21908.

    Article  PubMed  CAS  Google Scholar 

  48. Abbas AI, Yadav PN, Yao WD et al (2009) PSD-95 is essential for hallucinogen and atypical antipsychotic drug actions at serotonin receptors. J Neurosci 29:7124–7136.

    Article  PubMed  CAS  Google Scholar 

  49. Urban JD, Clarke WP, von Zastrow M et al (2007) Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 320:1–13.

    Article  PubMed  CAS  Google Scholar 

  50. KenakinT (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401.

    Google Scholar 

  51. Rajagopal S K, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386.

    Article  PubMed  CAS  Google Scholar 

  52. Pierce KL, Luttrell LM, Lefkowitz RJ (2001) New mechanisms in heptahelical receptor signaling to mitogen activated protein kinase cascades. Oncogene 20:1532–1539.

    Article  PubMed  CAS  Google Scholar 

  53. Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465.

    PubMed  CAS  Google Scholar 

  54. Bohn LM, Lefkowitz RJ, Gainetdinov RR et al (1999) Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 286:2495–2498.

    Article  PubMed  CAS  Google Scholar 

  55. Bohn LM, Gainetdinov RR, Lin FT et al (2000) Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature 408:720–723.

    Article  PubMed  CAS  Google Scholar 

  56. Bohn LM, Lefkowitz RJ, Caron MG (2002) Differential mechanisms of morphine antinociceptive tolerance revealed in beta-arrestin-2 knock-out mice. J Neurosci 22:10494–10500.

    PubMed  CAS  Google Scholar 

  57. Gainetdinov RR, Premont RT, Bohn LM et al (2004) Desensitization of G protein-coupled receptors and neuronal functions. Ann Rev Neurosci 27:107–144.

    Article  PubMed  CAS  Google Scholar 

  58. Raehal KM, Walker JK, Bohn LM (2005) Morphine side effects in beta-arrestin 2 knockout mice. J Pharmacol Exp Ther 314:1195–1201.

    Article  PubMed  CAS  Google Scholar 

  59. Ren XR, Reiter E, Ahn S et al (2005) Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci USA 102:1448–1453.

    Article  PubMed  CAS  Google Scholar 

  60. Charest PG, Oligny-Longpre G, Bonin H et al (2007) The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. Cell Signal 19:32–41.

    Article  PubMed  CAS  Google Scholar 

  61. Ahn S, Nelson CD, Garrison TR et al (2003) Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci USA 100:1740–1744.

    Article  PubMed  CAS  Google Scholar 

  62. Tohgo A, Pierce KL, Choy EW et al (2002) Beta-arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277:9429–9436.

    Article  PubMed  CAS  Google Scholar 

  63. Shenoy SK, Drake MT, Nelson CD et al (2006) Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 281:1261–1273.

    Article  PubMed  CAS  Google Scholar 

  64. Luttrell LM, Roudabush FL, Choy EW et al (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98:2449–2454.

    Article  PubMed  CAS  Google Scholar 

  65. Beaulieu JM, Sotnikova TD, Marion S et al (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273.

    Article  PubMed  CAS  Google Scholar 

  66. Wei H, Ahn S, Shenoy SK et al (2003) Independent beta-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 100:10782–10787.

    Article  PubMed  CAS  Google Scholar 

  67. Kohout TA, Nicholas SL, Perry SJ et al (2004) Differential desensitization, receptor phosphorylation, beta-arrestin recruitment, and ERK1/2 activation by the two endogenous ligands for the CC chemokine receptor 7. J Biol Chem 279:23214–23222.

    Article  PubMed  CAS  Google Scholar 

  68. Abbas A and Roth BL (2008) Arresting serotonin. Proc Natl Acad Sci USA 105:831–832.

    Article  PubMed  CAS  Google Scholar 

  69. Bohn LM, Dykstra LA, Lefkowitz RJ et al (2004) Relative opioid efficacy is determined by the complements of the G protein-coupled receptor desensitization machinery. Mol Pharmacol 66:106–112.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Bohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Bohn, L.M., McDonald, P.H. (2011). Detecting the Role of Arrestins in G Protein-Coupled Receptor Regulation. In: Stevens, C. (eds) Methods for the Discovery and Characterization of G Protein-Coupled Receptors. Neuromethods, vol 60. Humana Press. https://doi.org/10.1007/978-1-61779-179-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-179-6_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-178-9

  • Online ISBN: 978-1-61779-179-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics